필스동작 Ti: sapphire 레이저의 출력특성*

김병태 · 이현권

창덕대학 이공대학 광학공학과

(1996년 4월 15일 발음)

Nd : YAG 레이저 제 2조조파로 여기되는 Z차원 공간구 구조의 필스동작 Ti: sapphire 레이저가 개발되었다. 반사율 18%의 출력기술을 사용하여 중심파장 790 nm에서 27.4%의 발선효율로 822 μJ의 레이저 출력에너지에 5 ns의 필스폭을 얻었다. 기울기 효율은 35%에 달하였다. 레이저빛의 광학은 0.9 mm, 발산각은 1.8 mrad를 나타내었다. 반사율 18%의 출력기술과 3 mJ의 여기에너지에서 출력스케트립은 90 nm의 반지름을 갖고, 740nm에서 860 nm의 파장영역에 걸쳐 레이저가 출력되어 약 120 nm에 이르는 파장 가변특성을 보였다.

I. 서론

현재 파장가변 레이저로는 색소레이저를 주로 사용하고 있는데 레이저제이로 역할을 사용하기 때문에 매질의 물리·화학적 특성에서 매질 사용함에 따라 일어날 수 있는 성능저하 등의 문제가 발생세그메트 그렇다 출

던 레이저빔(beam)의 특성을 장기적으로 안정하게 제어하기가 어렵다. 또한 유지·보수가 어려운 운영상의 문제점도 있다. 이에 비해 물리·화학적으로 안정하고 레이저제이의 성능저하 등에서 문제가 없는 Ti: sapphire 레이저는 유지·보수 등의 관리가 용이하고, 신뢰성이 높으며, 출력, 파장가변성 및 스펙트럼 안정성 등의 성능 면에서도 색소레이저보다 우수한 광원으로 주목받고 있다.

최근의 레이저 응용에서는 가능하다면 넓은 파장가변 영역과 초단파파에 고출력을 넓을 수 있는 광원을 요구하는데 이 같은 출력특성을 갖춘 상태에서 직접 발전이 가능한 고효율레이저로는 Ti: sapphire 레이저를 제외하면 그다지 성공화되어 있는 것이 없다. 녹색의 흡수파장 영역을 갖고 있는 Ti: sapphire(Ti : Al₂O₃) 결정은 Nd : YAG 레이저 제 2조조파와 격리중기레이저, Ar+ 레이저 및 플래시램프 등을 여기원으로 하여 650 nm에서 1150 nm의 절간 넓은 파장가변 영역과 200 nm이나 되는 넓은 이두 대역폭에서 고효율의 레이저출력을 넓 수 있다는 것이 지금까지 확인되었다.[2] 이것이 그 어떤 단일 색소를 사용하는 레이저의 발전에서보다도 파장 가변영역이 넓은 것이다. 일반적으로 기본파의 발전에서는 필스동작 Ti: sapphire 레이저의 파장가변영역이 연속발진되는 레이저에 비해 좁은 것으로 알려져 있다.[3]

*본 연구는 한국전자연구소 전자기학연구개발 중장기계획사업의 연구비지원으로 수행된 것입니다.
시스템은 초고속 레이저 분광학, 초정밀 계측, 산업 소재의 특성 분석 등 높은 정밀도 광물학, 소자의 특성 평가, XUV나 X-선 발생용 광원 등에 이르기까지 널리 이용될 만큼이, 기초과학만 아니라 산업 과학 산업 분야에까지 그 응용성이 매우 높은 것으로 평가된다.

본 논문은 소형 고강도 고체레이저 시스템을 개발하기 위한 초기 연구 단계로 Nd : YAG 레이저의 제2고조파로 여기는 필스형 Ti : sapphire 레이저를 제작하여 극초단위스 발생에 이용하기 위한 측정기의 안정성 등의 동작특성을 평가 분석한 것이다. 특히 일반적으로 발전시키기 어렵다고 생각하는 18%의 아주 낮은 반사율을 갖는 출력하중을 사용하여 토크뢰의 레이저 출력을 높은 것과 같은 광장영역에 걸쳐 비교적 고른 출력으로 안정스럽게 발전하는 동작특성을 기술한다. 본 실험은 반도체레이저 레이저 Nd : YAG 레이저의 제2고조파를 여기므로 하는 Ti : sapphire 레이저의 가능성을 탐사하기 위한 것이기도 하다.

II. 레이저 공진기 구성

레이저 공진기의 구성은 기본적으로 Kerr 렌즈 차기 모드동기법(KLM)을 이용하여 초단위스 발생할 수 있도록 Z자형으로 하였다.[7,10] 그림 1에 본 실험에서 제작된 레이저 공진기의 구성과 출력특성을 측정하기 위한 측량기의 배치도를 나타낸다. 그림 1에서와 같이 Z자형 공진기를 두 장의 평면거울과 두 장의 오목거울로 구성되어 강한 집속 모드를 레이저마을 내에 형성시키도록 되어 있다. 두 장의 오목거울 사이에서 강한 집속 모드가 형성되므로 비선형 레이저마을인 Ti : sapphire 결정은 두 오목거울 사이에 놓게 된다. 일반적으로 공진기의 구성은 X자형이나 Z자형을 선택하게 되는데 이러한 구조에서는 편안하게 발생하게 되는 비결수차를 보정하기 위해 광교로의 세심한 조정이 필요하다. 그림 1에서 접선 안의 레이저 빔은 군속도 분산을 보정시켜 주기 위한 평화소자로 KLM에 의한 초단위스 발생 실험에서 사용될 것이다.

본 실험에서 구성한 공진기는 두 장의 오목거울 사이의 거리, 오목거울과 평면거울 사이의 거리에 따라 레이저가 발전 가능한 공진기의 안정조건을 형성하게 된다. 그림 1의 공진기에서 두 장의 오목거울을 블록대로 바꾸어 생각하면 결합법칙에 따라 두 장의 렌즈와 두 장의 평면거울로 구성되는 등가공진기를 구성할 수 있게 된다.11-12 이렇게 구성된 등가공진기에서 렌즈와 평면거울 사이의 거리, 렌즈의 초점거리에 의해 구해지는 오목거울의 국물 반지름은 R₁, R₂라 하고, 레이저를 발전시키기 위해 그림 1의 두 오목거울 사이에서 조정해야 하는 미소 감이를 δ라 하자. Z자형 공진기에서 두 오목거울 사이에 형성되는 집속 모드의 크기 W₀와 δ의 관

그림 1. 필스동작 Ti : sapphire 레이저의 공진기 구성과 출력특성 측정기 배치도.
그림 2. 오목 거품면과 레이저매질에서의 레이저빛살 입사각.

계를 다음의 식으로부터 구할 수 있게 된다.[13]

\[
W_{0} = \left(\frac{\lambda}{\pi} \right)^{1/2} \left[-\left(R_{1} + R_{2} + \delta \left(R_{1} + \delta \right) \right)^{1/2} \left(R_{1} + R_{2} + 2 \delta \right)^{1/2} \right]
\]

(1)

여기서 \(|R_{1}| > |R_{2}| \)라고 가정하면 이 등가공간기가 안정 조건을 만족시키기 위해서는 \(0 < \delta < R_{1} \), \(-R_{1} < \delta < -R_{2} \)의 상황을 유지해야 한다.[13] 식 (1)에서 \(\lambda \)를 Ti : sapphire 레이저 매질의 중심파장인 800 nm로 \(R_{1} = -5 \) cm과 \(R_{2} = -1.67 \) cm로 계산된 극물 반지름을 대입하여 계산한 결과, \(\delta \)의 변화에 따라 집중된 빛살의 크기는 최대 46 \(\mu \)m 정도밖에 되지 않아 기본적으로 KLM을 이용한 초단파 존재는 위해 설계 제작한 공관기에서 케다가 비슷한 형상을 가정할 수 있을 것으로 보인다.

등가공간기에서와 같이 공관기 내에 렌즈가 사용되는 경우에는 레이저빛살은 입사각이 \(0^\circ \)가 되도록 렌즈에 입사시킬 수 있으나, 실제 \(Z \)축정 공관기와 같은 형태에서의 오목거품은 어떤 각도를 유지하게 되므로 공관기 내에서 레이저빛살은 그림 2와 같이 입사각 \(\theta \)로 오목거품에 입사하게 된다. 이 경우 구면면(sagittal plane)과 자오면(tangential plane)에서 레이저빛살이 느끼는 오목거품의 초점거리가 서로 다르게 되어 비정수차가 발생한다.[14] 레이저매질의 전원된 레이저빛살은 발선될 수 있고, 여기에의 손실은 증가하기 위함 양면의 무반사 코팅이 필요 없으며, 매질의 표면 손상의 영향을 덜기 위하여 양 단면을 브루스터 각 \(\theta \)로 가공하여 사용한다. 그러나 이렇게 브루스터 각으로 가공된 이득체 중에서도 구면면과 자오면에서 레이저빛살은 통과하는 광학적 길이가 달라져 레이저매질에서 수차가 발생하게 된다. 레이저매질의 길이를 \(n \), 레이저빛살이 통과하는 길이를 \(\lambda \)이라 하자. 그렇다면 각각의 레이저빛살이 브루스터 각으로 입사하여 공관기를 한 번 통과할 때, 초점거리 \(f \)인 오목거품에서는 두 번 반사되고, 레이저매질을 통과하여 생성되는 수차는

\[
l \cos \theta_n \left(n_f^2 - 1 \right) \frac{n_f^2 + 1}{n_f^2} = 2l \sin \theta \tan \theta
\]

(2)

로 표현되는 수식에 의해 공관기의 오목거품에 레이저 빛살이 입사하는 각도 \(\theta \)를 조정함으로써 보정할 수 있게 된다.\[14\] 입사 각 \(\theta \)는 레이저매질의 길이(두께), 길물 및 오목거품의 초점거리 등에 의해 결정된다. 레이저빛살이 통과하는 Ti : sapphire 결정의 길이가 10 mm, 길물이 1.76mm이고, 오목거품의 초점거리가 50 mm일 때 식 (2)를 이용하여 오목거품에 입사하는 레이저빛살의 수차를 보정할 수 있는 입사 각도를 계산해 보면 \(\theta \)는 8.46\(^\circ \)가 된다. 따라서 공관기의 오목거품에서 레이저빛살의 입사각과 반사각, 즉 접선 각도 \(2\theta \)를 약 17\(^\circ \)로 하였을 때 수차가 보정되어 높은 여기효율에서 안정된 공관기를 형성하며 레이저매질 내에 강한 집속 모드를 형성할 수 있을 것으로 보인다. 실제 실험에서는 약 21\(^\circ \)로 하였을 때 가장 좋은 결과를 보였다.

III. 레이저 출력특성 해석

레이저매질로는 양 단면을 브루스터 각으로 가공한 5 mm\(\times \)10 mm의 크기에 \(Ti \)의 0.15 wt% 청가하고, FOM(ratio of absorptions 820 : 514 nm)이 200인 Ti : sapphire 결정(Union Carbide Inc.)을 사용하였다. 레이저 공관기는 \(R = \infty \)이고 610 ~ 860 nm 파장영역에서 전반과 특성 중 길이의 기온(Melles Griot Inc.), \(R = 100 \) mm이고 760 ~ 830 nm 파장영역에서 전반과 특성을 갖는 두 장의 오목거품을 갖는 레이저매질에서 유효한 비선형성 및 유발시킬 수 있도록 수차가 보정된 \(Z \)가 형태를 취하였다. 한 장의 오목거품은 여기를 위하여 반대측 면에 532 nm의 파장에 대해서 무반사 코팅된 이산성 기울이다.

제작한 Ti : sapphire 레이저 공관기의 최적 조건을 찾기 위한 기본 동적특성을 측정·분석하였다. 레이저 빛걸의 측정특성들은 모두 동시에 측정할 수 있도록 측정기기를 구성하여 측정 데이터들의 비교에 있어 신뢰성을 갖도록 하였다.

Ti : sapphire 레이저의 여기에로는 10 Hz까지 동작할 수 있는 Nd : YAG 레이저(Continuum Inc., NY-81)의 제2고조파를 사용하였다. 이 레이저는 532 nm의 파장에서 펄스당 최대 400 mJ의 에너지에 펄스폭이 17 ns인 Q-스위칭 펄스가 출력된다. Ti : AlO_3 결정의 여기유래는 여기유래의 전광상태에 따라 펄스율이 다른 특성을 갖고 있다. 이
그림 3. 출력거울의 반사율과 여기에 담긴 Ti:sapphire 레이저의 출력에너지.

기능 Nd:YAG 레이저의 빛받은 선형 구현된 것이며, 레이저매질에 입사하는 광방향을 채워하기 위하여 레이저 매질의 물리학적 특성, 브루스트 패턴과 같은 효과를 보여주어야 한다.

그림 4. Ti:sapphire 레이저의 출력거울 형질.

위해 출력거울의 반사율에 따른 Ti:sapphire 레이저의 출력에너지를 측정할 결과는, 레이저 광원기의 출력 거울의 반사율 guild 750 mm에서 850 mm의 각각 72%, 48%, 26% 및 18%를 사용하여 레이저의 출력특성을 측정하였다. 반사율 18%의 출력거울에서 27.4%의 레이저 출력에너지를 얻었고, 이때의 출력 중앙값은 750 mm, 거울기 효율은 35%에 달하였다.

일반적으로 필스형 레이저에서는, 고출력에서는 반사율 30% 이상의 출력거울을 사용하는 것으로 인식되어 왔으나 실험 결과에서도 알 수 있듯이 이 18%라는 아주 낮은 반사율을 갖는 출력거울로 구성된 실험이 큰 공기에서도 효율의 레이저의 격정을 얻을 수 있다는 것을 보여주고 있다. 이런 결과는 가장 높은 필스형 레이저 폭에 의해 효율을 측정하기 위하여, Ti:sapphire 및 Nd:YAG 레이저의 향상과 레이저 장에서 측정한 결과는 맹기에서 레이저의 레이저의 측정 가능성을 의미하고 있다. 그림 3에 나타난 부분은 레이저의 반사율과의 출력거울 관계로 두재된 레이저의 필요한 도움을 얻은 레이저를 측정하였다. 그림 4는 Ti:sapphire 레이저의 출력거울의 측정으로 5 ns의 반사율을 갖으며 비교적 개개인 형태를 보이고 있다. 필스 형식 5 ns는 Ti:sapphire 레이저의 자유방진 (free running) 상태에서 인을 부여할 수 있는 가장 큰 값을 근본하는 것이다. 레이저의 향상은 여기의 향상은 레이저의 모드 형성에 관계없이 그림 4의 상태로 인해 이와 비슷하게 개개인 형태를 유지하는 것으로 관측되어 Ti:sapphire 레이저에서 여기의 모드 상태가 출력거울에 그다지 영향을 미치지 않고 있음을 알 수 있다.
그림 5. 40 cm의 레이저 공진기 길이에서 여기에너지 변화에 따른 펄스폭의 변화.

그림 6. 3 mJ의 여기에너지에서 출력과음의 반사율에 따른 Ti:sapphire 레이저의 출력스펙트럼.

그림 7. 반사율 18%인 출력과음에서 여기에너지에 따른 Ti:sapphire 레이저의 출력스펙트럼.

수 있었다. 그림 5는 공진기 길이로 40 cm로 고정한 상태에서 여기에너지에 따른 펄스폭의 변화를 측정한 것이다. 그림에서 볼 수 있듯이 여기에너지를 증가시킴에 따라 펄스폭이 조금씩 줄어들다가 1.5 mJ 이상의 여기 에너지에서는 펄스폭이 안정되는 현상을 보여 있어 공 진기의 구성도 상당히 안정된 상태임 것으로 판단된다. 한편, 펄스폭은 공진기 길이에 선형적으로 의존하는 경향을 보이고 있다. 공진기 길이가 40 cm일 때 펄스폭은 약 5 ns, 150 cm일 때 40 ns로 공진기의 길이가 길어짐에 따라 펄스폭도 넓어지는데 이는 공진기 안에서 풀에의 황록시간과 풀의 생성(build up) 시간이 더 걸리기 때문인 것으로 생각된다. 발진한 Ti:sapphire 레이저빛 상의 적경은 약 0.9 mm이고, 발산각은 약 1.8 mrad으로 측정되었다.

제작된 Ti:sapphire 레이저에서의 출력스펙트럼 분포는 분광기를 이용하여 측정하였다. 출력되는 레이저 빛을 분광기에 입사시키고, 분광되어 나온 레이저빛을 P.M. Tube로 중류시키어 오일로스코프에서 파장에 따른 상대적인 강도를 측정하여 스펙트럼 분포를 조사하였다. 레이저의 출력스펙트럼을 측정하기 위해 사용된 분광기(McPherson Inc., 270)는 600 g/mm의 회절격자와 35 cm의 초점거리와 갖는 것이고, P.M. Tube는 Hama matsu의 R406을 사용하였다. 그림 6은 여기에너지 3 mJ에서 48%, 26% 및 18%의 평균 반사율을 갖는 출력과음에 따른 상대적인 출력스펙트럼 특성을 나타내고 있다. 그림 7은 반사율 18%인 출력과음에서 여기에너지에 따른 상대적인 출력스펙트럼 특성을 조사한 것 이다. 그림 6과 7에서 볼 수 있듯이 출력스펙트럼은 90 nm의 반치폭을 갖고, 740 nm에서 860 nm의 파장영역에 걸쳐 레이저빛상이 출력되어 약 120 nm으로 이는 파장 가변특성을 보였다. 레이저출력이 750 nm와 850 nm 부근에서 급격하게 떨어지는 것은 공진기를 구성하고 있는 괴의 오목각과 출력과음이 760 nm에서 830 nm 정도까지만 정향한 반사특성을 갖고 있어 이것이 레이저발진에 직접적인 영향을 미쳤기 때문인 것으로 판단된다. 낮은 반사율을 갖는 출력과음으로 공진기를 구성하였을 때 파장에 따른 레이저의 에너지가 발전 중심파장인 790 nm을 잡게하면서 비교적 넓고 고르게 출력되어 일반적으로 청두출력을 중심으로 산부양을 형성하는 것을
ifestyles

크게 개선시키는 결과를 가져오게 하였다. 이 결과는 필스형이 연속형 여기보다 발진파장에 따른 레이저 출력 에너지의 변동폭이 작은 상태에서 파장 가변성을 얻을 수 있음을 단적으로 보여주는 것이기도 하다. 이와 같은 결과로 현재 구성된 레이저 공정파장에서 출력광의 반사율을 쌍력 낮추고, 공정파를 구성하는 기돌미는 700 nm에서 900 nm에 걸쳐 평탄한 반사특성을 갖는 것으로 교환한다면 30%가 넘는 높은 발전효율에 필스동작에서 도 150 nm을 상회하는 스펙트럼 반사율을 갖는 출력특성을 나타내려 보여진다. 현재 세계적으로는 고출력 에서도 600 nm에서 900 nm에 걸쳐 일정한 반사특성을 갖는 기돌이 제작되고 있어 기돌을 교환하지 않고도 Ti : sapphire 레이저의 출력광장 전역을 발전시킬 수 있게 되어 가고 있다. 현재 레이저 출력광장의 선택을 용이하게 하고, 파장 가변성을 좀더 개선하기 위하여 공정기 내부에 복굴절편들을 삽입하여 실시간 실험결과 를 분석중이다.

IV. 결 론

소형 고강도 고체레이저 시스템에 사용될 Nd : YAG 레이저의 제2조파로 여기는 필스형 Ti : sapphire 레이저가 개발되었다. Z자형 공정기를 구성하여 반사율 18%의 출력광장에서 27.4%의 발전효율에 822 μJ의 레이저 출력에너지를 얻었고, 이 때의 출력 중심파장은 790 nm, 기돌기 효율은 35%에 달하였다. 이 결과는 동양적인 개념을 깨고 18%라는 아주 낮은 반사율을 갖는 출력광장에서도 고효율의 레이저출력을 얻을 수 있음을 보여 주었다. 출력원소는 Ti : sapphire 레이저가 자유발전이 서 만들어 수 있는 가장 빌드 것으로 보이는 5 ns의 반 사폭을 형성하였고, 레이저발신의 적절은 0.9 mm, 발산 각은 1.8 mrad를 나타내었다.

출력스펙트럼은 90 nm의 반사폭을 갖고, 740 nm에서 860 nm의 파장영역에 걸쳐 레이저빛이 출력되어 약 120 nm에 이르는 파장 가변특성을 보였다. 18%의 낮은 반사율을 갖는 출력광장을 사용하였을 때 파장에 따른 레이저의 에너지가 발진 중심파장을 전후해서 비교적 넓고 고르게 출력되어 일반적으로 산모르의 하는 출력 스펙트럼의 폭을 크게 개선시킨 결과를 얻었다. 한편 공정기를 구성하고 있는 기돌들의 반사특성이 레이저의 파장 가변성을 제한하는 직접적인 원인이 되었음을 알 수 있었다.

본 실험의 결과로부터 반도체레이저 여기 Nd : YAG 레이저에서 약 5 mJ 정도의 출력에너지들 얻는다면 이 것이 제2조파를 여기므로 하는 Ti : sapphire 레이 지가 충분히 가능하다는 것을 확인하였다. 이들을 연계 시켜 전고체로 구성되는 Ti : sapphire 레이저에서 Kerr 렌즈 자기 모드등기법을 이용하여 조단원을 발생시켜 소형의 고강도 Ti : sapphire 레이저 시스템에 사용할 수발신기를 개발할 예정이다.

참 고 문 헌

Output Characteristics of a Pulsed Ti:sapphire Laser

Byung-Tai Kim and Hyoung-Kwon Lee
Department of Optical Engineering, Chongju University, Chongju 360-764, Korea

(Received April 15, 1996)

A pulsed Ti:sapphire laser with a Z-folded cavity, which was pumped by a frequency-doubled Nd:YAG laser, was developed. A laser output energy of 822 μJ with a pulsewidth of 5 ns and an output efficiency of 27.4% was obtained at a center wavelength of 790 nm using an output coupler of 18% reflectance. The slope efficiency was 35%. The output beam diameter was 0.9 mm, and the divergence angle was 1.8 mrad. The spectrum tunability was about 120 nm from 740 nm to 860 nm with a FWHM of 90 nm at an 18% output coupler and a pumping energy of 3 mJ.