On regular groups over their endomorphism rings

  • Published : 1996.04.01

Abstract

Let G be an abelian group of finite rink and E be the endomorphism ring of G. Then G is a left E-module by defining $f\cdota = f(a)$ for $f \in E$ and $a \in G$. In this case a condition for an E-module G to be regular is given.