SOME NECESSARY CONDITIONS FOR ERGODICITY OF NONLINEAR FIRST ORDER AUTOREGRESSIVE MODELS

  • Lee, Chan-Ho
  • Published : 1996.05.01

Abstract

Consider nonlinear autoregressive processes of order 1 defined by the random iteration $$ (1) X_{n + 1} = f(X_n) + \epsilon_{n + 1} (n \geq 0) $$ where f is real-valued Borel measurable functin on $R^1, {\epsilon_n : n \geq 1}$ is an i.i.d.sequence whose common distribution F has a non-zero absolutely continuous component with a positive density, $E$\mid$\epsilon_n$\mid$ < \infty$, and the initial $X_0$ is independent of ${\epsilon_n : n > \geq 1}$.

Keywords

Markov process;ergodicity;invariant probability