Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets-

그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-

  • KIM Dae-An (Department of Marine Science and Technology, Yosu National Fisheries University)
  • 김대안 (여수수산대학교 해양생산학과)
  • Published : 1995.03.01


In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.