A Study on the Characteristic of Airborne Lead Particle Size by Industry

업종별 공기중 납입자의 입경별 분포특성에 관한 조사 연구

  • 박동욱 (한국산업안전공단 산업보건연구원) ;
  • 백남원 (서울대학교 보건대학원)
  • Published : 1995.11.10

Abstract

The size characteristics of lead particle which is one of the important factors associated with absorption of lead were ignored in establishing lead standard. This study was conducted to investigate distribution of lead particles by operation of industry. Aerodynamic Mass Median Diameters (MMD) of airborne lead particles in the battery and litharge manufacturing industry were $14.1{\mu}m$ and $15.1{\mu}m$, respectively. There was no significant difference between those two values(p>0.05). However, the diameters in radiator manufacturing and secondary smelting industry were $1.3{\mu}m$, $4.9{\mu}m$, respectively. Those were significantly smaller than the particle sizes in other industries(p<0.05). Total lead concentrations in the secondary smelting industry were higher than those in the battery and litharge manufacturing industry. Total lead concentrations in other industries except radiator manufacturing industry exceeded the standard of $50{\mu}g/m^3$. Only radiator manufacturing industry indicated lead concentrations significantly lower than those in other industries(p<0.05). Concentrations of lead particles smaller than $1{\mu}m$ defined as respirable fraction by OSHA's CPA model assumption were $72.4{\mu}g/m^3$ in the secondary smelting industry, exceeding $50{\mu}g/m^3$. The relationship of concentrations between total lead and lead of particles smaller than $1{\mu}m$ was log Y = 0.46 logX + 0.06(n=119, $r^2=0.44$, p=0.0001). Relationship of respirable lead concentrations between OSHA and ACGIH was significantly detected in the litharge and battery manufacturing industry(p=0.0001), but was not significant in the radiator(p=0.2720) and secondary smelting manufacturing industry(p=0.2394). As MMDs of lead particles generated in industry were small, difference of respirable lead concentration between OSHA and ACGIH became smaller. There was a significant difference between concentrations respirable lead defined by two organizations such as OSHA and ACGIH in the battery and litharge manufacturing industry. Average concentration of respirable lead by ACGIH definition was 43.3 % of total lead in secondary smelting and 48.9 % in radiator manufacturing industry, and lower fractions were indicated in battery and litharge manufacturing industry. Relationships of total lead with IPM, TPM, and RPM were significant respectively(p=0.0001) and lead concentrations by particle size could be estimated using this relationship. Linear regression equation between total lead concentration(X) and ACGIH-RPM concentration(Y) was log Y = 0.76 log X - 0.40($r^2=0.89$, p=0.0001).