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Effects of Air Compressibility
on the Hydrodynamic Forces of a Bag

Gyeong-Joong Lee*

Abstract

The hydrodynamic problem when the pressurized bag submerges partially into water
and oscillates was formulated by Lee(1992), and the solution method was given. In
his formulation, however, the compressilbility of air was neglected and the pressure
inside the bag was assumed to be constant.

In this paper, the formulation was done including the air compressibility and the
wall to block fling around phenomenon. The compression process was assumed to be
a isothermal process for a static problem, isentropic process for a dynamic problem.
And the stability was analyzed for the static problem. Through the various numerical
calculations, the forces and the shape of the bag were compared with those of a rigid
body case, constant pressure case, and variable pressure case.

1 Introduction

The stern bag of SES plays an important role in preventing the air from leakage out of the
cushion chamber, and this is very effective because of its flexibility. The bag also has an
effect on the motion of the craft, especially on the pitch motion.

Ozawal1] studied the dynamic characteristics of the seal system of SES by theoretical
method and experiments, however in his study the hydrodynamics is not included. The
hydrodynamics of the bag submerged partially into water was formulated and calculated by
Lee[2], but he assumed a constant pressure in the bag, so the compressibility of air was
ignored.

The hydrodynamics of a bag has peculiar characteristics: the boundary condition on the
bag is represented globally not point-wisely and it has a very complex form because the
pressure change in certain portion of a bag affects the shape of the bag on the whole. And
it is a moving boundary like a free surface boundary so the treatment of it is difficult.

The motion of a bag can be divided into two modes by its mechanism, one mode is
due to the pressure change in the bag, and another due to the movement of structure to
which the bag is attached. In the later case, the pressure in the bag can be constant or
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Figure 1: Shape of a bag and coordinate system

variable, it is almost constant when the air of the bag is fed by a huge reservoir and the
opening area to the bag is large, and when the opening of the bag is closed the pressure
inside is to be varied in order to satisfy the state equation of air. There are two processes
in compression-expansion, isothermal process and isentropic process. For static problem,
it is assumed to be isothermal because there is enough time to flow out the resulting heat,
and for dynamic problem isentropic because there is too short time to flow out the resulting
heat totally.

In this paper, the static and dynamic problem were formulated including the compress-
ibility of air. Because most bags are made of fiber, the mass of the bag and girth-wise
elongation were ignored. And the hydrodynamic problem is treated by a potential theory.
The wall to block the ‘fling around’ is included, and the static stability was analyzed more
thoroughly. Through a number of numerical calculations, the comparison was done with
rigid body, compressible air, constant pressure cases.

2 Static Problem

In this chapter, the shape and the static problem were studied for a pressurized bag sub-
merged partially into water. The pressure in the bag may remain constant, or may be varied
because of the compressibility of air. The isothermal process is assumed. In this study, the
mass of a bag and elongation in girth-wise length are ignored like Lee[2].

2.1 The shape of a Bag

Suppose that there is no tangential force on the surface of a bag, so the tension is constant
along the perimeter. The shape of a bag and coordinate system is shown in Fig.1.

The end points of a bag are attached to the structure, these points are denoted by point
A, B and their positions are {4, ya), (z5. yp). The angles between the tangential direction
of the bag and x-axis are 64,65 at end points, and 6({) between them. Here / is the girth-
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wise length, and total length is L. If the bag is overlapped with the wall, the angles of end
points are 6y 4, 6w p, and the overlapping lengths are 4, {p respectively.

The relationship of the pressure, tension, curvature of the bag is given by the following
Laplace formula.[3]

T
P,—P= I (1

where P, is the pressure in the bag, P out of the bag, T tensile force, R radius of curvature.
The definition of radius of curvature is the reciprocal of the derivative of tangential angle
with respect to arc length, so the tangential angle can be obtained from it.

1
g = — o)
(l) A Rdu+ A
! _
_ /_—ﬂpb P w0, ?)
0 T

and when the bag is overlapped with the wall, it is

Ow a [ <y
0(l) =<{ Owa+T [ (P, — P(u))du l4<l<L—-lg (3)
Owa+T71 '8Py~ P(w)du 1> L— .

Ow a4 = 64 when [4 = 0. With this angle, the shape of the bag can be represented by
!
z(l) = / cos(f(u))du + x 4,
0

!
y(l) = /Osin(ﬁ(u))du—i-yA. 4

Once the two points A, B and length L and pressure difference are given, the shape can be
obtained. The unknowns are T,6, for [4 = 0, or 7,14 for [4 > 0. For the mathematical
convenience, introduce the generalized 4.

()A—{ZA if 14> 0. ()

The following state equation of air is to be used when the compressibility of air is
included.
P,V = const.

Above equation is for the isothermal process. In the static problem, there is enough time
to flow out the resulting heat totally, so the assumption of isothermal process is reasonable.
Including the compressibility, the pressure inside F; is also an unknown to be sought for,
thus three unknowns can be found from three equations below.

fi = z(L)—25=0
fo = y(L)-yp =0 (6)
fa = BV — Pyl =0,
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Figure 2: Forces and shape of a bag

where the volume inside is

V= [ ySdit S (a+ y(D)za - a(L)

The pressure out of the bag has a value P(l) = —pgy(l) only in the portion below the
free surface y = 0. Eq.(6) are non-linear equations, the solution is obtained using Newton-

Raphson method.
Tk+1 T* AT*

9 8 2 —1
AO/}k = i %92 ﬁ f2k . (N
AR, o1 0. ok fs

The derivatives used in above equations are derived in Appendix A. The initial guesses are
given as the same manner as in the work of Lee[2].

2.2 Static Stability

The stability of the static equilibrium state of a bag is analyzed here.

Firstly, suppose the case that the bag is not overlapped with the wall. The external
force on the bag is

fr = —=Tcosfs4+ T cosbp, (8)
fy = —PFyd+ Buoy—Tsinf4+ Tsinfp.
If the shape is symmetric in y-axis, 84 = —0p, so the force in the z-direction vanishes.

When an infinitesimal force in the z-direction exists, the angles are changed by an amount
of A4, Afg respectively, and these changes are positive. The change in f, is

Af, =Tsinf04A04 — TsinfgAbp 9



18 Effects of Air Compressibility on the Hydrodynamic Forces of a Bag

For the case that 5 < 7, Af, is negative and its direction is opposed to the direction
of movement, so the positive restoring results out. The static instability takes place when
fp > 7, and a neutral state when fg = 7.

Secondly, suppose the case that the bag is overlapped with the wall. Similarly, the
external force on the bag is

fz = -—TCOSGWA +TCOS€WB
—PblA SiIlBWA - PblB sin HWBa (10)
fy = —Pyd+ Buoy—Tsinfwa+ Tsinfwp

+Pylscos 0w 4 — Pylg cosBwp.

If the shape is symmetric, 64 = Owp. When an infinitesimal force in the z-direction
exists, the overlapped length are changed by an amount of Al 4, Alg, where Al is negative,
Alp positive. The change in f, is

Afz = —PbAlA sin 9WA — PbAlB sin 9WB- (11)

From the above equation, it can be said that it is stable when 5 < 7, unstable when
fwp > 7, neutral when By g = w. This result is the same as the case of no wall.

3 Dynamic Problem

The hydrodynamic problem when the bag moves is treated here. The motion of a bag can
be divided into two modes by its mechanism, one mode is due to the pressure change in
the bag, and another due to the movement of structure to which the bag is attached. In the
later case, the pressure in the bag can be constant or variable, including the compressibility
of air it is to be varied in order to satisfy the state equation of air, and an isentropic process
is assumed.

3.1 Shape Change due to Pressure Change

In order to obtain the boundary condition on the bag, the shape change due to the pressure
change in and out has to be known before.

Firstly, suppose the case that the pressure in the bag changes. The change of P, results
in the changes of 7', 04, and the shape. Denote the change of P, by dP,, and the shape by
dX,,dY,. Even though P, changes, the end points of the bag remain at the same points,
that is, the first two equations in Eq.(6) must hold. The differentials of them are

ox(L) Ox(L) dx(L) B
S0P+ T+ 5l = 0, (12)
L) yp, 1 O gy, L) gy -

opF, oT 004
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dT,df 4 can be obtained from the above equations.

dT dz(L) ox(L) 171 dz(L)
— F)
{ d6 } - { o) oull) } { A }de~ (13)
oT 004 AP,
The change of the shape is
oz(l) az(l) oz(l)
dXi(l) = dar P

(D) 5T + 50, df, + aP, dPy, (14)

dy(l) ay(l) dy(l)

)= —=—* .

dYi({) 5T dT + 50, dfs + oP, ap, (15)

Substituting Eq.(13) into above equations, dX,([),dY;(!) can be represented by only one
variable P,. The derivatives used in above equations are derived in Appendix A.

Secondly, let us seek the shape change due to variations of the outside pressure. Here-
after the equations are derived for the case of compressible air, if the constant pressure is
wanted it is achieved by setting dP, = 0,V =const. In the isentropic process, the state
equation of air is

Pbl/yv - Pblo/y% =0, (16)

where ~y is the specific heat of air, its value is 1.4 for dry air. The differentials of the first
two equations in Eq.(6) and the above equation are as follows.

Ox(L) Oz (L) dz(L) Oz(L)
dT P, =
Sp 0P + —==dT + 3. 9, + 3T, dP, = 0,
dy(L) 9y(L) dy(L) dy(L)
R ASia P =
o5 0P + —==dT + 0 o, + 3F, dP, =0, (17)
1% v 1% 1%
ap il ol + 5,04+ (vPb " 8Pb) =0

dT,df 4, dP, can be obtained from the above equations as follows.

IT dx(L Oxz(L dxz(L -1 z(L)
) E[i ) %I i i ELbi 68 LL dPP
(]Z?A é;g; 580\; |4 5Pb oV yge d) . ( 1 8)
L% aT 96 4 vP, AP, oP df

The derivatives used in above equations are derived in Appendix A. and B. Because dP(/)
is a function, derivative with respect to dP(l) is somewhat different from that with respect
to a scalar, and it has to be obtained in the distribution sense. Thus derivatives with respect
to a function dP(l) is linear operators not values, Appendix B. contains more details. The
shape change of the bag can be obtained as follows.

o ox(l) ox(l) oz (1) dx(l)

de(l) = e dT + g mdba + psdPy + S odP, (19)
ay(l ay(l 9y (1 ay(l

dy(y = 20y D 4o W yp, + 20 p

oT 064 oF, oP
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Using Eq.(18), the above equations are rewritten as below.

oz (1) % ar
. T ox(l
L)) = SPlap+ ) { db, }

= L, -dP, (20)

T
v dT
ayy = 2Wqp | &b {d()A}

= L,-dP. 21

where L;, L, are linear operators.

3.2 Boundary Condition

The boundary condition on the surface of a rigid body is well known and simple, but on the
surface of a flexible body, like a pressurized bag, the boundary condition has a complicated
nature.[2] In the previous section, the shape change due to the change of pressure is given,
but practically in a fluid the bag can not make such shape change because of the static and
dynamic pressure in the fluid.

P = —pgy — poy fory <0,

where ¢ is a velocity potential. The motion excluding this dynamic condition, that is, the
movement due to the change of the pressure in the bag and due to the movement of the
end points is represented by

dXp() = dXi() + dXo, (22)
dYg(l) = dVi(l)+dYs,

where dX,dY; are the shape changes due to the pressure inside, and dX,, dY; are the
motion displacements due to the movement of its end points. If the compressibility of air
is included, d X, dY] need not to be considered. The actual displacement of the surface of
a bag is as follows, using the dynamic condition.

dy = L, -dP+dYg
= —pglLy-dy— pL; - do: + dYE,

dy = [I + pgL3)~'[—pL} - dé + dYE], (23)
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in which I is an identity operator and L; is an operator which is reduced from L, by
ignoring the part of ¥ > 0. Similarly da can be obtained as follows,
dr = L, -dP+dXg
= —pLi[I + pgL;| " déy
-—ng;[[ + ng;]_ldYE +dXg. (24)
Only the portion y < 0 is required to solve the boundary value problem. Examining the
above two equations closely, we know that the portion y > 0 has no effect on the portion
y < 0 because the pressure remains constant over the portion y > 0. Thus we can rewrite
the equations only for y < 0.
de* = —pK,[I + pgK,| 'd¢,
—pgK (I + pgK,|7'dYs + dX3, (25)
dy* = [I+ pgK,) ' [-pK,dé: + dYg}, '
where K, K, are the linear operators which are reduced from L}, L} by ignoring the part

of y > 0, and defined only on the portion y < 0.
The kinematic condition is

= neXpy + CyYg, — Codu, (26)
where
Cy = [ny— nzpg K[ + PgKy]*l,
Co = [nepKaoll + pghy|™" + nypll + pg K| 7 Ky

The boundary condition can be represented globally as shown above. Above boundary
condition seems to be similar to that of free surface, but it is global while that of free
surface is point-wise.

3.3 Boundary Value Problem

In the framework of potential theory, the governing equation is Laplace equation, and there
must exist boundary condition on the whole boundary. This boundary value problem is
summarized as follows.
Vipg = 0 in fluid domain,
Oy +1/9 du 0 on y=0, 27
On + Codre = n Xp +C,Yg,
on the Surface of the bag,

and appropriate radiation condition. The solution of this boundary value problem can be
obtained by Green’s identity

#(P) = [ {Gao(P.Q)S(Q) — G(P, Q)2 (Q)}dS(Q). @28)



22 Effects of Air Compressibility on the Hydrodynamic Forces of a Bag

where P is the field point and Q source point, and G(P, Q) is the fundamental solution
of Laplace equation which satisfies the free surface boundary condition and the radiation
condition.[4] Discretizing the surface submerged, assuming that the values of ¢, ¢, are
constant over each segment and equal to the values at midpoint, and performing integration
over each segment analytically, the above equation becomes the matrix equation below.

(8} = [Gal{6} - [G{dn}. 29)

Suppose the case of time harmonic motion. Substituting the boundary condition into the
above equation results in

[ = Gn +W*GCy{d} = —[Gl{naXp: + Cy Y} (30)

After discretization, the operator Cy, C, turn into matrices and n.,n, diagonal matrices.
Once the solution of the above equation is found, the pressure on the surface of a bag can
be calculated by

dP = —pgdy — pdg,
= —plI + pgK,) H{gdYr +d¢,} fory<O0. (31)

The first term of the above equation is static pressure and the second term is hydrodynamic
pressure. The force acting on the bag is calculated by integrating d/” on the surface of it.
Substituting the above equation into Eq.(20),(21), we can obtain the shape change of the
bag, and into Eq.(18), the tension, 04, B;.

4 Numerical Resutls

All calculations were carried out with single precision on the 1386 based PC. The total length
of the perimeter of a bag was divided into 100 elements. And non-dimensionalization is
as follows: perimeter length L/d , submerged depth depth/d , volume inside V' = V/ d?,
submerged area A’ = A/d? , pressure inside p' = py/pgd , tension T" = T/pd , frequency
w /m , added mass a/pd? , damping coefficient b/ pd* \/g—/g

4.1 Static Problem

All integrations used for the static problem were performed by the trapezoidal method.
Lee[2] used the modified Newton method to solve the non-linear equations, however in
this paper, the conventional Newton-Raphson method makes no problem in solving them
because the wall to block ‘fling around’ makes the solution scheme more stable. But the
special numerical treatment is required when the bag starts to be overlapped with the wall.

The shapes of a bag with various submerged depths are shown in Fig.3 and Fig.4. The
results for constant pressure are in Fig.3, and for compressible air in Fig.4. Comparing two
cases, it is known that the shapes are similar for small depths, but as the depth increases
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the shape change is smaller and the bottom position is lower in the case of compressible
air. This is due to the fact that the inside pressure grows as the depth increases.

In Fig.5, the inside volume, submerged area, tension, inside pressure are drawn for the
various submerged depth. Including the compressibility of air, it can be said that all values
are larger than those for the constant pressure case. The buoyancy force can be obtained
by multiplying the submerged area by pg, and the restoring force by differentiating this
with respect to depth, so the restoring force is proportional to the slope of the submerged
area. For the constant pressure, the slope is nearly constant while the length of water line
increases, but for the compressible air the slope grows large as the depth increases, and
therefore larger restoring force than that of constant pressure case.

4.2 Dynamic Problem

The heave added mass and damping of a bag are shown in Fig.6 and Fig.7. In low frequency,
the added mass and damping have similar behavior to those of rigid body while their values
are small. As the pressure increases, the added mass and damping become close to that
of rigid body. The effect of compressibility is not shown significantly. In the medium
frequency ranged from 1.5 to 2.7 for the Fig.6 and Fig.7, the added mass and damping
behave quite strangely, this phenomenon seems to be a resonance of the bag. The bag
itself is a spring-mass-damper system because the bag above the free surface has a similar
role of spring. Therefore the bag has a natural frequency, and as the pressure inside grows
large, tension increases, and does the equivalent spring constant. As the result, the resonant
frequency of high pressure is higher than that of low pressure. The possibility of irregular
frequency has been considered, but this is not the case because the submerged shape is
nearly the same so the irregular frequency must remain near a certain frequency, and the
added mass and damping of the rigid body of same shape in the range under considering
have a smooth behavior. Thus this phenomenon can not be considered as that of irregular
frequency. Therefore author concluded that this is the resonance of the bag, but a more
careful study on this phenomenon must be done.

5 Conclusions

In this paper, the static and dynamic problem was analyzed including the compressibility
of air when a bag filled with pressurized air submerges into water. This problem has some
distinct nature: both the kinematic and dynamic conditions are required for the boundary
condition on the surface of a bag because the surface of a bag can be deformed easily by
the pressure acting on it, and the boundary condition is represented not locally but globally.

In this paper, the formulation was done in the framework of potential theory including
the compressibility of air, and the wall to block ‘fling around’ is included. Following
conclusions are drawn:

1. The effect of air compressibility was shown in static problem especially in
large depth, but in dynamic problem the effect is small.
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2. The added mass and damping behaves strangely near a certain frequency,
this behavior seems to be a resonance of the bag not an irregular frequency
phenomenon.

Author hopes advances in the resonance of a bag, and the application to the stern bag of
SES.
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Appendix A. Derivatives w.r.t. Scalar

The definition of the tangential angle 6({) is given in Eq.(3). Derivative of §(1) with respect
to a generalized 64 is, for [4 = 0,

a6(l) _
. = L (A1)
forls > 0,
0 [ <1
a0(l A
FH\—): —{Pb—P(lA)}/T lA<l<L—*lB (A2)
A ~-—{IDb—IDUA)}/T l>L-—lB.

Derivative of 6(l) with respect to T, P,.

86’(1) 0 [ < lA
5 =3 I LAP—P)}du ly<l<L-lIg (A3)
T2 [E'5 (P~ P(u)}du | > L — g,

55 = (I-14))T la<l<L-lp (A.4)

89(l) 0 [ <4
(L=15—1)/T |>L—Ig
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Derivatives of z, y

L
(1) = z(l) + iy(l) = / 9O dy + 14 + iya,
0

oz(l) _ / OF 06(v )dv

oT oT
0z(1) _ ' iew),98(v)
90, /Oe ) ) dv,
) o, 00),
oP, 0 3Pb

Derivative of Volume V

= [(vS it s+ y(D) (e - 3(D))

ov.  rL ?_y_(_l_)_da:( 0 dx(l)
= { y(1)— }dl

o~ oT di aT dl
3 { B ea - o) - a w252
oV 1t [ dy(l) dz(l) o _dz(l)
5?07“/0 {3&57”(1)39 i }dl
B o - ol - ta + D g .
oV L (8y(l)dz(l) 9 dx(l)
5?;’/0 {FPTTZZ_*W)aP,, dl }dl
+L {63;,5’@ —2(L) - (g + <L))&‘(L)} ,
where dflgl) = cos(8(1)),
8 da(l) 06’(1
a7 =~ sme) 55
g dx(l) ( )
B0, di _—sm(e(l))—éza—,
8 dx(l) _ a9(l)
P A — sin(@(! )~8—P—

Appendix B. Derivatives w.r.t. a Function
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(A.5)

(A.6)
(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

When a function f is a function of P(l), the change of f due to a change of P , dP(/)
can be obtained in the following manner. The derivative of f w.r.t. P when P is varied at
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one point [ = s by an amount of AP - §(1 — s) is

oP AP

This has a similar meaning with an impulse-reponse function. Therefore the change of f
due to dP(l) can be obtained as follows. :

Bf af
S5dP = /0 ( - P) (1 —s) - dP(l)ds. (B.2)
The derivative of § w.r.t P is
o6 1
(8p) (l—s)= _TH(I — 3). (B.3)

With this result, the change due to dP can be obtained.

a;g)dp = /OL { /olei“% (g%) (v—s)dv}-dp(s)ds

- /Ol{ / ”’(")Tdv}-dP(s)ds, (B.4)
- () 5000 (5))

4 { (%—?) (24— 2(L)) ~ (ya + 9(L)) (3;;5.9 )}] iP(s)is. (BS)
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for constant pressure case

Figure 4. Shape of bag with various depths

including air compressibility effect

3 Static Properties

27

depth/d 2

) ) ) Figure 5: Static properties of a bag with
Figure 3: Shape of a bag with various depths changing depths for compressible air (solid

line) and constant pressure (dashed line)

cases

Ld =5, depth/d=0.5

® w/dg 4

Figure 6: Heave added mass & damping for

constant pressure.

Non-dimensioned pres-

sures are 0.25, 0.5, 0.75, 1.0, 1.5. Dashed
lines are for the rigid body of the same

shape.(¢' = 1)
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Heave Added Mass L/d=5, depth/d=0.5
4 T T T

Heave Damping
8

J ; : o

Figure 7: Heave added mass & damping
for compressible air. Non-dimensioned pres-
sures are 0.25, 0.5, 0.75, 1.0, 1.5. Dashed
lines are for the rigid body of the same
shape.(p' = 1)



