Determination of Short-term Bioconcentration Factor and Partition Coefficient on Chlorothalonil in Carassius auratus(goldfish)

Carassius auratus(goldfish)를 이용한 Chlorothalonil의 단기간 생물농축계수와 분배계수의 측정

  • 차춘근 (계명대학교 자연과학대학 공중보건학과) ;
  • 전봉식 (계명대학교 자연과학대학 공중보건학과) ;
  • 민경진 (계명대학교 자연과학대학 공중보건학과)
  • Published : 1995.09.01

Abstract

The Bioconcentration factor (BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on Chlorothalonil in Carassius auratus(goldfish), under steady state, and examined correlation between the BCF value and the partition coefficient or acute toxicity or physicochemical properties. Carassius auratus(goldfish) was chosen as test organism and test period were 3-day, 5-day. Experimental concentrations were 0.005, 0.01 and 0.05 ppm. Chlorothalonil in fish tissue and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detecting and quantitating of Chlorothalonil. Partition coefficient was determined by stir-flask method. $LC_{50}$ was determined on Chlorothalonil. Carbaryl and BPMC. The obtained results were as follows. 1. It was possible to determine short term BCFs of Chlorothalonil through relatively simple procedure in environmental concentrations. 2. $BF_3$ of Chlorothalonil in concentration of 0.005, 0.01 and 0.05 ppm were 2.1866$\pm$0.23446, 3.5269$\pm$0.23517, 10.2045$\pm$0.18053 and BCFs were 6.6543$\pm$0.55257, 6.9774$\pm$0.02500, 23.4576$\pm$2.06884, respectively. 3. Chlorothalonil concentration in fish extract and BCFs of Chlorothalonil were increased as increasing test concentration and prolonging test period. 4. Fate of test-water concentration on Chlorothalonil was greater than that of control-water con-centration. It is considered that greater fate of test-water concentration on Chlorothalonil is due to hydrolyzing nitrile group under the mild condition and substituting chloro group by some aromatic compounds in test water. 5. Determined logP of Chlorothalonil was 2.80. And determined $LC_{50}$ of Chlorothalonil in time of 24, 48, 72 and 96 hr were 0.1684, 0.1402, 0.1400, 0.1352(mg/l) respectively. And $LC_{50}$ of Carbaryl in above times were 19.918, 18.635, 18.466, 18.12(mg/l) respectively. $LC_{50}$ of BPMC were 10.248, 9.166, 9.087, 8.921(mg/l) respectively. 6. It is suggested that the BCF of Carbamates depend on partition coefficients. But BCF of Chlorothalonil, organochlorine pesticide, would be strongly influenced by steric, electronic effect of substituents than partition coefficient.