RELATIONS BETWEEN THE ITO PROCESSES

  • Choi, Won (Department of Mathematics, University of Incheon)
  • Published : 1995.01.01

Abstract

Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measure on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$-algebras of F. If $r > 0$, let $J = [-r,0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert = sup_{s \in J}$\mid$\gamma(s)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E,F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$.