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FUZZY WEAKLY SEMICONTINUOUS MAPPINGS

SAM-YOUL YOON AND SANG-HO PARK

1. Introduction

The concept of a fuzzy set, which was introduced in [9], provides
a natural framework for generalizing many of the concepts of general
topology to what might be called fuzzy topological spaces. The idea of
fuzzy topological spaces was introduced by Chang [2]. The idea is more
or less a generalization of oridinary topological spaces.

In [3,4], A. Kal and P. Bhattacharyya have studied weakly semicon-
tinuous mappings in topological spaces. In this paper, we generalize the
concept of weakly semicontinuous mappings in fuzzy setting,.

Also, we show that the class of fuzzy weakly semicontinuous map-
pings contains the class of fuzzy weakly continuous[1], fuzzy semicontin-
uous(1,6] and fuzzy weakly irresolute mappings|8]. And we characterize
fuzzy weakly semicontinuous mappings and investigate relationships be-
tween fuzzy weakly semicontinuity and other weaker forms of continuity,
and properties of the fuzzy weakly semicontinuity.

Throughout this paper, our notation and terminology will coincide
that of [1], [8]; however, a brief review of basic terms will be given in
here.

A fuzzy point p in X is a fuzzy set in X defined by

: forr =z
p(z) = { ke (0,1) P

0 otherwise

for each = € X, where z, and k are the support (written z,=supp p)
and the value of p, respectively. A fuzzy point p is said to belong to a
fuzzy set A in X, written p < A, iff p(z,) < Mzp).

In what follows, (X,7X) and (Y, 7Y) (or shortly X and Y') would
mean fuzzy topological spaces unless otherwise specified.
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DEFINITION 1.1. ([1]) Let A be a fuzzy set in X. The closure Cl\A and
the interior IntA of X are defined by

Ch=inf{r:v>) v erX},

and
IntA =sup{v:v <A, verX}

DEFINITION 1.2. ([1]) Let A be a fuzzy set in X.

(a) X is called a fuzzy semi-open set in X if there exists v € 7X such
that v < A < Clv.

(b) X is called a fuzzy semi-closed set in X if there exists v/ € 7X
such that Intr < A <v.

LEMMA 1.3. ([1]) Let A be a fuzzy set in X. Then the following are
equivalent:

(a) A is a fuzzy semi-closed set.

(b) X' is a fuzzy semi-open set.

(¢) IntCIA < A

(d) ClIntA' > X.

DEFINITION 1.4. ([7,8]) Let A be a fuzzy set in X. The semi-closure
sClA and the semi-interior sIntA of A are defined by

sCIA = inf{y : A < p, p is fuzzy semi-closed}

and
sIntA = sup{p : ¢ < A, p is fuzzy semi-open}.

LEMMA 1.5. ([7,8]) Let A and u be fuzzy sets in X satisfying A < p.
Then;

(a) sCIA < sClu,

(b) sIntA < slntu,

(c) A £ sCIA £ CI,

(d) A > sIntA > Inth.

LEMMA 1.6. ([8]) Let A be a fuzzy set in X. Then;
1— sIntA = sCl(1—A) and 1 — sCIA = sInt(1 — A).
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PROPOSITION 1.7. Let A be a fuzzy set in X. Then we have

sInthA = AN Clint).

Proof. Let X be a fuzzy set in X. Then sIntA is a fuzzy semi-open
set in X. So, sIntA < CI( Int( sIntA)) < ClIntA. Hence sInth < AN
ClintA.

Also, clearly IntA < AN ClintA < ClintA. So, AN ClintA is a fuzzy
semi-open set and AN ClintA < A. Hence AN ClIntA < slntA.

2. Fuzzy weakly semicontinuous mappings

In (3], A. Kal and P. Bhattacharyya defined the notion of a weakly
semicontinuous mapping in topological spaces as follows;

DEFINITION 2.1. A mapping f : X — Y is said to be weakly semi-
continuous if for each z € X and each open set V in Y containing f(z),
there exists a semi-open set U such that z € U and f(U) C CI(V).

We generalize the above definition in fuzzy setting.

DEFINITION 2.2. A mapping f : X — Y is said to be fuzzy weakly
semicontinuous if for each fuzzy point p in X and each fuzzy open set A
in Y satisfying f(p) < A, there exists a fuzzy semi-open set u in X such
that p « p and f(pu) < CIA

THEOREM 2.3. Let f : X — Y be a mapping. Then the following
are equivalent:

(a) f is fuzzy weakly semicontinuous.

(b) For any fuzzy open set A in Y, f~1()\) < sInt(f~!( CI\)).

(c) For any fuzzy open set A in Y, sCIf~}()) < f~1( CIA).

(d) For any fuzzy open set A inY, f~1(A) < ClIntf~( CI)).

(e) For any ruzzy open set A in'Y, IntCIf~*(A) < f~( CI\).

Proof. (a)==(b) Let A be any fuzzy open set in ¥ and p < f~(A).
Then f(p) < f(f71(A)) < X. Also, since f is fuzzy weakly semicon-
tinuous, there exists a fuzzy semi-open set p in X such that p € p
and f(p) < CIA. This implies p < ¢ < f~!( Cl\) and so by Lemma
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15, p<p = slnty < sknt(f~'( ClA)). Thus, we have f~1(}) <
sInt(f~1( CIN)).

(b)==(c) Let A be fuzzy open in Y. Then Cl\ is fuzzy closed set in
Y and so 1 — ClA\ is fuzzy open in Y. It follows

1-f71(C) = 11— C) < sIntf~!( Cl(1 = CIN))
= slnt(1 — f71( IntCIA)) = 1 — sCLf~!( IntCL\).

Now, we also have

F7HCIA) > sCIf~!( IntCIA) > sCIf~'( IntA)
= sCIf~1(\).

(c)==>(d) Let X be fuzzy open in Y. Then 1 — CI) is fuzzy open in
Y. So, by (c), we have

1— sIntf~'( ClA) = sCIf~}(1 - CI\) < I CY1 = C))
= "Y1~ IntC\) = 1 — f~( IntCIN).
Hence by Propsition 1.7

FTHA)Y = F71(Intd) € f7Y( IntCIA) < sntf ~!( CLA)
= f7Y( CIA) N Cllntf~1( CIA) < Clintf~( CIA).

(d)=>(e) Let A be fuzzy open in Y. Then 1 — CIl\ is fuzzy open in
Y. So,

1—f71(C\) = fY(1— CIA) < Clntf~'( Cl(1 - CIA))
= ClIntf~*(1 — IntClA\) = CI(1— CIf~'( IntCI\))
=1~- IntClf~!( IntCL)).

Therefore we have

IntClf 7' (A) = IntClf~!( IntA) < IntClf~'( IntCIA) < F~1( CIN).
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(e) =>(a) Let p be a fuzzy point in X and X fuzzy open in Y satisfy-
ing f(p) < A. Then p < f~()\) and by (e), IntClf~1()) < f~1( CL\).
Hence IntClf~'(A) < slntf~'( ClA) € f~!( Cl\) and by Proposition
1.7, sIntf=1( CIA) = f~1( CIA) N ClIntf~!( CIA). Also,

1— Clntf~!( CIA) = IntClf~}(1 — CI\) < f7I( Cl(1 — CIA))
= f1(1- IntCA\) =1— f( IntCIA) < 1 - f71(N).

So, we get
F7HA) < Cllntf~1( CLY)
and
) < e,
Therefore

p< f7HN) < slntf7Y(CIA) < f7H( CLA).
Putting g = sIntf~*( CI\), u is fuzzy semi-open in X. Thus

f(w) < F(fH(CIN)) < CA

EXAMPLE 2.4. Let A and u be fuzzy sets in the unit interval I defined

by
OifOSxS%,
Mo ={
0.31f§<x§1.
and
01f0§x§%,
ple) =4 04if <z <4,
02if 2 <z <1,

Consider fuzzy topologies 711 = {0,1,1} and 7] = {0,1,4} on I and a
mapping f : (I, 7I) — (I,72I) defined by f(z) = z for each z € I.

It is easy to show that sClf~!(0) = f~'( Cl0) and sClf~1(1) =
f71( Cl1). So, we will show that sClf ~'(x) < f~1( Cly).

0 if 0<zr<4i,
(FH))z) = 04 if 3 <z<i,
02 if $<z<l
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0 if 0<z< %,

(sClf (u))(z) =4 0.4 if §<z<4,
L 03 if 2<r<1

(1 if 0<z<4,
(Clu)(z)={ 06 if $<z<2,
(08 if $<a<1.

(1 if 0<z<3,

(FH(Clu))(z)= 4 06 if 3<z=4},
(08 if <<l

Thus by Theorem 2.3, f is fuzzy weakly semicontinuous.

DEFINITION 2.5. ([1]) A fuzzy topological space X is product related
to a fuzzy topological space Y if for any fuzzy set vin X, ninY, A e 71X
and u € 7Y satisfying (A x p)’ > v x 7, there exist Ay € 7X and p; € 7Y
such that (A} > vorv] > n)and A} X g = A X p.

LEMMA 2.6. ([1]) Let X and Y be fuzzy topological spaces such that

X is product related to Y. Let A be a fuzzy set in X and p a fuzzy set
in'Y. Then

(a) CIAxpu)= CI\x Cly,
(b) Int(A x g) = IntA x Intp.

THEOREM 2.7. Let X1,X2,Y7 and Y, be fuzzy topological spaces
such that X; and Y are product related to X, and Y, respectively. If
fi: X1 — Yy and fy : X2 — Y, are fuzzy weakly semicontinuous, then
the product fi x fo : X; x Xy — Y7 x Y3 is fuzzy weakly semicontinuous.

Proof. Let A = U(Aq x pg), where Ay, and pgs are fuzzy open set
in Y7 and Y5 respectively, be a fuzzy open set in Y; < Y5.

(fi x f2)7H(N)
= (fi x f2)7H(U(a x ug)) = U(f1 X fo) 7 (Aa X )
= Ulfi (Aa) X £ 1 (us)] < U[ Clintf7(ClAg) x Cllntf; ' (Clug)]
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= U ClInt[f; 1 (ClAg) x f771( Clug)] < Cllnt U [f71(Clhg) x £ (Clug)
= ClInt U (f1 x f2)"'(Clha x Clug)

= ClInt(f; x f2)7'(U( ClAy x Clug))

< Clint(f; x f2)"H(ClU (Aq X pg)) = Clint(fy x f2)"(CIA).

Thus by Theorem 2.3, f1 x fo is fuzzy weakly semicontinuous.

THEOREM 2.8. Let f : X — Y be a mapping. If the graph g :
X — X xY of f is fuzzy weakly semicontinuous, f is also fuzzy weakly
semicontinuous.

Proof. Let A be a fuzzy open set in Y. Since g is fuzzy weakly semi-
continuous,

A =10 f1N) =¢7(1 x ) < Cllntg™(CI(1 x )))
< Clintg™'(1 x CIA) = ClInt(1 0 f~1(CL))
= ClIntf~1(CIN).

The proof is complete.

3. Relationships between fuzzy weakly semicontinuity and
weaker forms of continuity

DEFINITION 3.1. ([1]) A mapping f : X — Y is said to be fuzzy
semicontinuous if for any fuzzy open set A in Y, f~!()) is fuzzy semi-
open in X,

LEMMA 3.2. ([6]) Let f : X — Y be a mapping. Then the following
are equivalent:

(a) f is fuzzy semicontinuous.

(b) For each fuzzy point p in X and each fuzzy open A in Y satisfying

f(p) < A, there exists a fuzzy semi-open set p in X such thatp < p

and f(u) < A

ExaMPpLE 3.3. Let (I, nI) and (I, moI) be the same fuzzy topolog-
ical spaces and f the fuzzy weakly semicontinucus map in Example 2.4.
Also u is the fuzzy open in (I, 72I), but f~!(u) is not fuzzy semi-open
in (I,711). Hence f is not fuzzy semicontinuous.
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DEFINITION 3.4. ({1]) A fuzzy topological space X is said to be fuzzy
regular if each fuzzy open set A in X is a union of fuzzy open sets Ay
in X such that ClA, < A, for each a.

THEOREM 3.5. Let f: X — Y be a mapping and Y a fuzzy regular
space. Then f is fuzzy weakly semicontinuous if and only if f is fuzzy
semicontinuous.

Proof. 1t is clear that every fuzzy semicontinuous mapping is fuzzy
weakly semicontinuous.

Conversely, let p be a fuzzy point in X and )\ a fuzzy open in Y
satisfying f(p) < A. Since Y is a fuzzy regular space, A = U),, Ay € 7Y
and ClA, < Afor each a. Now, f(p) < X implies that there exist a fuzzy
open set Ay, in Y such that f(p) < A,, and ClA,, < A. Since f is fuzzy
weakly semicontinuous, there exists a fuzzy semi-open set u in X such
that p € g and f(p) < Clhgag. Hence f(u) < ClA,, < A, so that f is

fuzzy semicontinuous.

DEFINITION 3.6. ([8]) A mapping f : X — Y is said to be fuzzy
weakly irresolute if for each fuzzy point p in X and each fuzzy semi-
open set A in Y satisfying f(p) < A, there exists a fuzzy semi-open set
# in X such that p < g and f(g) < sClA.

THEOREM 3.7. ([8]) f: X — Y is fuzzy weakly irresolute if and only
if for any fuzzy semi-open set A in Y, sCI(f~1())) < f=1(sCIN).

THEOREM 3.8. If f : X — Y be fuzzy weakly irresolute, then f is
fuzzy weakly semicontinuous.

Proof. Let p be a fuzzy point in X and X a fuzzy open in Y satsfying
f(p) < A. Then A is fuzzy semi-open in Y. Since f is fuzzy weakly ir-
resolute, there exists a fuzzy semi-open set 4 in X such that p < p and
f(e) < sClA. Also, Since sClA < CIA, we get f(i) < sCIA < CIA.

Therefore f is fuzzy weakly semicontinuous.

EXAMPLE 3.9. Let (I, 1) and (I, 72I) be the same fuzzy topolog-
ical spaces and f the fuzzy weakly semicontinuous map in Example 2.4.
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Let v be a fuzzy set in I defined by

0.2 if 0<z <y,
v(iz) =< 045 if 3 <z <2,
025 if 2<z<1,
Then clearly, v is fuzzy semi-open in (I,m2I), sClv = v and
f~Y( sClv) = v. Since f~}(v) = v, we get
02 if 0<z <,
sCIf 7' (v)(z) =4 045 if <z <2,
03 if 2<z<l

Thus, sClf~!(v) £ f~1(sCl). So f is not fuzzy weakly irreso-
lute([8)).

REMARK 3.10. The composition of fuzzy weakly semicontinuous
maps need not be fuzzy weakly semicontinuous as following example.

Let A and p be a fuzzy set in I defined by A(z) = 0.3, and u(z) = 0.4.
Clearly mI = {0,1,A, X'}, 71 = {0,1,)} and 73] = {0,1, 4} are fuzzy
topologies on I. Let f : (I,7I) — (I,7oI) and g : (I, 72I) — (I, 73I)
be identity mappings and h = g o f. Then it is easy to show that f
and g are fuzzy weakly semicontinuous. But, since h~!(u)(z) = 0.4,
sClh_l(p) x) =X (:v) = 0.7 and h~1(Clu)(z) = 0.6 for any z € I, we
get sClh=1(p) £ A1 (Cly), and so h is not fuzzy weakly semicontinuous.

DEFINITION 3.11. ([5]) A fuzzy topological space X is said to be
fuzzy extremely disconnected if the closure of each fuzzy open set in X
is a fuzzy open set in X.

THEOREM 3.12. Let Z be fuzzy extremely disconnected space. If
f: X — Y is fuzzy weakly irresolute and g : Y — Z is fuzzy weakly
semicontinuous, then go f : X — Z is fuzzy weakly semicontinuous.

Proof. Let p be a fuzzy point in X and ) a fuzzy open set in Z satis-
fying (g o f)(p) = 9(f(p)) < A. Since g is fuzzy weakly semicontinuous,
there exists fuzzy semi-open v in ¥ such that f(p) < v and g(v) < CI\.
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So, f(p) « v < g7'( Cl\) and sClv < sCl(g~!( CI))). Since Z is ex-
tremely disconnected, ClA is fuzzy open in Z. Hence by Theorem 2.3,

sClg™'( CIA) < ¢~}( CICIA) = g~1( CLA).

Since f is fuzzy weakly irresolute, there exists fuzzy semi-open g in X
such that p < p < f~( sCIA). Thus, we have

p<p< fI(sCIN) < f7(sCl(g™"( CIN))
< fTHTH(CIN) = (g o /)TH( CLy).

DEFINITION 3.13. ([6]) A mapping f : X — Y is said to be fuzzy
irresolute if for any fuzzy semi-open set A in Y, f () is fuzzy semi-open
in X.

THEOREM 3.14. Let f : X — Y be fuzzy irresolute and g : Y — Z
be fuzzy weakly semicontinuous. Then go f : X — Z is fuzzy weakly
semicontinuous.

Proof. Let p be a fuzzy point in X and A a fuzzy open set in Z satis-
fying (g o f)(p) = ¢(f(p)) < A. Since g is fuzzy weakly semicontinuous,
there exists fuzzy semi-open v in Y such that f(p) < v < g7!( CIA).
Since f is fuzzy irresolute, take a fuzzy semi-open set p = f~1(v) in X.

Thenp < f~!1(v) < f~ (g7 CIN)) = (g o f)~'( ClA).

DEFINITION 3.15. A mapping f: X — Y is said to be fuzzy weakly
continuous if for each fuzzy point p in X and each fuzzy open set A in
Y satisfying f(p) < A, there exists a fuzzy open set p in X such that
p < pand f(u) < CLA

LEMMA 3.16. ([6]) f: X — Y is fuzzy weakly continuous if and only
if for each fuzzy open set A in Y, f~1( CI\) > CIf~'())

THEOREM 3.17. If f : X — Y is fuzzy weakly continuous, then f is
fuzzy weakly semicontinuous.

Proof. Let p be a fuzzy point in X and )\ a fuzzy open set in X
satisfying f(p) < A. Since f is weakly continuous, there exists fuzzy
open p in X such that p « p and f(u) < Cl\. Then g is clearly fuzzy
semi-open and so f is weakly semicontinuous.
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EXAMPLE 3.18. Let A and u be fuzzy sets in the unit interval I
defined by A(z) = 0.3 and u(z)= 0.4. Consider fuzzy topologies 731 =
{0,1,A} and 7] = {0,1,4} on I and a mapping f : (I, I) — (I, 7,1)
defined by f(z) = « for each z € I. Then we get

sCLf71(0) = f71( Cl0) =0, sClfF (1) = f7( Cll) = 1,

(F7' () (z) =04, (sCIf~(u))(z) = 0.4,
( Clp)(e) = 0.6 and (f~*( Clu))(z) = 0.6.

Thus, sCIf~'(u) < £71( Cly). By Theorem 2.3, f is fuzzy weakly semi-
continuous. But

Clf 7'(p)(z) = 0.7 and so CIf~*(u) £ f~( Clp).
Hence, f is not fuzzy weakly continuous.

THEOREM 3.19. Let Z be extremely disconnected space. Iff: X -
Y is fuzzy weakly semicontinuous and g : Y — Z is fuzzy weakly con-
tinuous, then go f : X — Z is fuzzy weakly semicontinuous.

Proof. Let p be a fuzzy point in X and )\ a fuzzy open set in Z
satisfying g(f(p)) < A. Since g is fuzzy weakly continuous, there exists
a fuzzy open set v in Y such that f(p) « v < g~ !( CI\). Since f is
fuzzy weakly semicontinuous, there exist a fuzzy semi-open set x4 in X
such that ¢(f(p)) < p and f(u) < Clv. Since Clv < Clg~l( Cl) <
g7 CICIN) = g~ ( Cl)), g o f is fuzzy weakly semicontinuous.

THEOREM 3.20. Let X, X; and X; be fuzzy topological spaces and
pi: X1 xXo — Xi(i = 1,2) be the projection of X, x X, onto X;. Then
if f: X — X x Xy is fuzzy weakly semicontinuous, pi o f is also fuzzy
weakly semicontinuous.

Proof. Let p be a fuzzy point in X and A a fuzzy open set in X;(i =
1,2) satistying (pi o f)(p) < X. Since p; is fuzzy continuous, there exists
a fuzzy open set p in X; x X, such that f(p) < x and pi{p) < A. Since
[ is fuzzy weakly semicontinuous, there exists a fuzzy semi-open set 5
in X such that p « n < f~1( Clp). Now,

n < 7 Clp) < £ Clp7 1 (N)))
< 7PN CIN) = (pio /)71 CLN).

The proof is complete.
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REMARK 3.21. Let A, p and 7 be fuzzy sets in the unit interval I
defined by A(z) = 0.3, u(z) = 3z and n(z) = O.4foreach z € I. Consider
I = {0,1,\, N}, ol = {0,1,p}, 3l = {0,1,2} and 7I = {0,1,1} on
I Let f: (I,nI) = (I,rI), g : (I,msI) = (I,maI), b : (I, msI) —
(I,73I) and k : (I,mI) — (I,73I) be identity mappings. Then, we
get easily the following results; (a) f is fuzzy weakly irresolute and fuzzy
weakly continuous, but is not fuzzy semicontinuous. (b) g is fuzzy weakly
irresolute and fuzzy semicontinuous, but is not fuzzy weakly continuous.
(c) h is not both fuzzy weakly irresolute and fuzzy semicontinuous, but
is fuzzy weakly continuous. (d) k is fuzzy semicontinuous, but is not
fuzzy weakly irresolute. Thus, these three concepts are independent.
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