A central limit theorem for sojourn time of strongly dependent 2-dimensional gaussian process

  • Jeon, Tae-Il
  • Published : 1995.11.01

Abstract

Let $X_t = (X_t^(1), X_t^(2))', t \geqslant 0$, be a real stationary 2-dimensional Gaussian process with $EX_t^(1) = EX_t^(2) = 0$ and $$ EX_0 X'_t = (_{\rho(t) r(t)}^{r(t) \rho(t)}), $$ where $r(t) \sim $\mid$t$\mid$^-\alpha, 0 < \alpha < 1/2, \rho(t) = o(r(t)) as t \to \infty, r(0) = 1, and \rho(0) = \rho (0 \leqslant \rho < 1)$. For $t > 0, u > 0, and \upsilon > 0, let L_t (u, \upsilon)$ be the time spent by $X_s, 0 \leqslant s \leqslant t$, above the level $(u, \upsilon)$.

Keywords

central limit theorem;sojourn;diagram formula