AN ESTIMATE OF FOCAL POINTS FOR SPACELIKE HYPERSURFACES

  • KIM, SEON-BU (Dept. of Mathematics, Chonnam National University) ;
  • KIM, JEONG-SIK (Dept. of Mathematics, Chonnam National University) ;
  • LEE, EUN-JU (Dept. of Mathematics, Chonnam National University)
  • Received : 1995.05.25
  • Published : 1995.07.30

Abstract

Keywords

Acknowledgement

Supported by : Ministry of Education

References

  1. Math. Proc. Camb. Soc. v.86 Cut points, conjugate points and Lorentzian comparison theorem Beem, J.K.;Ehrlich, P.E.
  2. Marcel Dekker Pure and Applied Math v.67 Global Lorentzian geometry Beem, J.K.;Ehrlich, P.E.
  3. Comparison theorems in Riemannian Geometry Cheeger, J.;Ebin, D.G.;North Holl. Publ. Co
  4. Manuscripa math. v.31 Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds Chicone, C.;Ehrlich, P.E.
  5. Contemporary Math. of AMS v.170 Form the Riccati equation to the Raychaudhuri inequality Ehrlich, P.E.;Ki, S.B.
  6. Comm. Korean Math. Soc. v.6 A facal comparison theorem for null geodesics Ehrlich, P.E.;Kim, S.B.
  7. J. of Geometry and Physics Pitagoras Editrice v.6 A focal index theorem for null geodesics Ehrlich, P.E.;Kim, S.B.
  8. J. Diff. Geom. v.14 A generalization of Myers theorem and an application to relativistic cosmology Galloway, G.J.
  9. Lecture notes Riemanniansche Geometrie im Grossen, Vol.55 Gromoll, D.;Klingenberg, W.;Meyer, W.
  10. K-Jacobi fields and Lorentzian comparison theorems Kim, S.B.
  11. J. of the Korean Math. Soc. v.31 A focal Myers-Galloway theorem on space-times Kim, S.B.;Kim, D.S.
  12. Math. Ann. v.276 On the existence and comparison of conjugate points in Riemannian and Lorentzian geometry Kupeli, D.N.
  13. Math. z. v.198 On conjugate and focal points in Semi-Riemannian geometry Kupeli, D.N.
  14. An introduction to the theory of ordinary differential equations Leightan, W.
  15. Duke Math. J. v.8 Riemannian manifolds with positive mean curvature Myers, S.B.
  16. Comparison and Oscillation theory of linear differential equations Swanson, C.A.
  17. Math. Ann. v.252 Jacobi tensors and Ricci curvature Eschenberg, J.H.;O'Sullivan, J.J.