• KIM, IN-SOO (Dept. of Mathematics, Chonbuk National University) ;
  • PARK, JONG-JIN (Dept. of Mathematics, Chonbuk National University) ;
  • SONG, YOUNG-SEOP (Dept. of Mathematics, Chonbuk National University)
  • Received : 1995.04.27
  • Published : 1995.07.30




Supported by : Ministry of Educatíon


  1. De $R^n$ -adische Voortvrenging van Algemeen-topologische Ruiten met Toepassingen op de Constructie van niet Splitsbare Continua Van Heemert, A.
  2. Amer. J. Math. v.52 A continuum every subcontinuum of which separates the plane Whyburn, G.T.
  3. Proc. Amer. Math. Soc v.12 A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic Andrews, J.J.
  4. Duke Math. J. v.15 A homogenous decomposible plane continuum Bing, R.H.
  5. Fund Math. v.221 Ploblem 2 Canster, B.;Kuratowski, C.
  6. Duke Math. J. v.21 Inverse limit spaces Capel, C.E.
  7. Compositio Math. v.4 Entwicklungen von Raumen und ihren Grupen Freudenthal
  8. Pac. J. Math. v.68 A characterization of solennoids Hagopian, C.L.
  9. Ann. of Math. v.70 Embeddings of inverse limits Isbell, J.R.
  10. The axiom of choise Jech, T.J.
  11. Topology, Vol I Kuratowski, K.
  12. Topology, Vol II Kuratowski, K.
  13. Trans. Amer. Math. Soc. v.109 ${\epsilon}-mappings$ and onto polyhedra Markesic, S.;Segal, J.
  14. Fund Math. v.221 Ploblem 14 Majurkiewicz, M.
  15. Trans. Amer. Math. Soc. v.63 An indecomposible plane continuum which is homeomorphic to each its nondegenerated subcontinua Moise, E.E.
  16. Trans. Amer. Math. Soc. v.157 Multicoherence techniques applied to inverse limits Nadler, S.B.
  17. Modern General Topology Nagata, J.
  18. J. London. Math. Soc. v.39 Mapping norms and indecomposability Segal, J.
  19. Proc. Amer. Math. Soc v.10 A plane continuum no two of whose non-degenerate subcontinua are homeomorphic : an application of inverse limits Anderson, R.D.;Gustave Choquet
  20. Glasnik Mat. v.23 A note on inverse sequences of ANR's Loncar, Ivan;Markesic, Sibe