Surface Topography and Photoluminescence of Chemically Etched Porous Si

화학식각법에 의해 형성된 다공질실리콘의 표면형상 및 발광특성

  • 김현수 (경상대학교 물리학과) ;
  • 민석기 (한국과학기술연구원 반도체재료 연구실)
  • Published : 1994.06.01

Abstract

Room-temperature photoluminescent porous Si has been formed by etching Si wafer u-ith the solution of $HF:HNO_{3}: H_{2}O$=l : 5 : 10. We have observed photoluminescence(PL) spectra similar to those reported recently for porous-Si films formed by anodic etching with HF solutions. We have also investigated the dependence of PI, spectra on the etching time which was varied from 1 to 10 minutes. We found that 5-minute etching gave us the strongest PL intensity. We also found by atomic force microscopy( AFM) measurements that the surface fearure size became smaller for longer etching time and the average feature size of the etched Si wafer for 5-minute was about 1, 500~2, 000$\AA$. This indicates that the surface feature of the etched porous Si affects the PL intensity of the sample.

Keywords

References

  1. Bell Stst. Tech. J. v.35 A. Uhlir
  2. J. Electyrochem. Soc. v.105 D.R. Turner
  3. J. Electrochem. Soc. v.125 T. Unagami; M.Seki
  4. J. Electrochem. Soc. v.130 G. Bomchil; R. Herino; K. Barla; J.C.Pfister
  5. J. Crystal Growth v.103 H. Sugiyama;O. Nittono
  6. J. Appl. Phys. v.69 K.H. Kim;G. Bai; M-A. Nicolet; A.venezia
  7. Appl. Phys. Left. v.51 Y.C. Kao;K.L. Wang;B.J. Wu;T.L. Lin;C.W. Nieh;D. Tamieson;G. Bai
  8. Jpn. J. Appl. Phys. v.26 T. Ito;A. Hiraki
  9. J. Appl. Phys. v.70 L.T. Canham;M.R. Houlton;W.Y. Leong;C. Pickering;J.M. Keen
  10. Appl. Phys.Lett. v.57 L.T. Canham
  11. Nature v.353 A.G. Cullis;L.T. Canham
  12. Appl. Phys. Lett. v.58 V. Lehmann;U. Gosele
  13. Appl. Phys. Lett. v.59 S. Gardelis;J.S. Rimmer;P. Dawson;B. Hamilton;R.A. Kubiak;T.E. Whall;E.H.C. Parker
  14. Phys. Rev. v.B45 S.Y. Ren;J.D. Dow
  15. Appl. Phys. Lett. v.59 C. Tsai;K-H. Li;J. Sarathy;S. Shin;J.C. Campbell;B.K. Hance;J.M. White
  16. Appl. Phys. Lett. v.62 Y.H. Seo;H.-J. Lee;H.I. Jeon;D.H. Oh;K.S. Nahm;Y.H. Lee;E.-K. Suh;H.J. Lee;Y.G. Hwang
  17. Appl. Phys. Lett. v.60 R.W. Fathauer;T. George;A. Ksendzov;R.P. Vasquez
  18. J. Electrochem. Soc. v.139 K.H. Jung;S. Shin;D.L. Kwong;T. George;T.L. Lin;H.Y. Liu;J. Zavada
  19. Appl. Phys. Lett. v.62 S. Shin;K.H. Jung;R.Z. Qian;D.L. Kwong
  20. Appl. Phys. Lett. v.60 T.Tsu;H. Chen;M. Dutta
  21. Appl. Phys. Lett. v.60 Z. Sui;P.P. Leong;I.P. Herman;G.S. Higashi;Temkin
  22. Appl. Phys. Lett. v.60 R.P. Vasquez;R.W. Fathauer;T. George;A. Ksendzov;T.L. Lin
  23. Appl. Phys. Lett. v.62 H.-J. Lee;Y.H. Seo;D.-H. Oh;K.S. Nahm;E.-K.Suh;Y.H. Lee;H.J. Lee;Y.G. Hwang;K.-H. Park; S.H. Chang;E.H. Lee
  24. Appl. Phys. Lett. v.60 J. Sarathy;S. Shih;Kim Jung;C. Tsai;K.-H. Li;D.-L. Kwong;J.C. Campbell;S.-L. Yau;A.J. Bard
  25. Appl. Phys. Lett. v.62 W.B. Dubbelday;D.M. Szaflarski;R.L. Shimabukuro;S.D. Russell;M.J. Sailor