Soap-Free Emulsion Polymerization of Styrene/Butadiene/Acrylonitrile System

Huey-Sil Chung* and Young-Jo Shin

Dept. of Polymer Science and Engineering, Pusan National University, Pusan 609-735, Korea
*Research and Development Center, Hyundai Petrochemical Co., Ltd.
(Received September 16, 1992, Accepted February 22, 1993)

Abstract: The soap-free emulsion polymerization was carried out for Styrene/Butadiene system with Acrylonitrile as hydrophilic comonomer and KPS as initiator. Under the condition of below 50% conversion, the dependence of Rp on [AN] and [KPS] was found to be n=1.617-1.050 and n=0.83-0.96 for [AN] and [KPS], respectively. The effect of [AN] and [KPS] on particle number density (Np) was determined to be n=1.533 and n=0.733, respectively. The highest conversion was obtained under the conditions of pH=5 and ratio of total monomer (g) to water (g)=0.5. The mechanical properties of SBR obtained in this experiment were shown to be inferior to commercial SBR in terms of tensile strength, 300% modulus and elongation. It was found that cure rate of SBR prepared in this experiment was faster than that of commercial SBR.

1. 서 론

Styrene-Butadiene Latex는 생성입자의 안정성을 유지시키기 위해 유화체를 사용한 유화중합의 방법으로 제조되고 있다. 유화체를 사용할 경우 생성 latex 에 유화체가 불순물로서 전자기 때문에 중합체의 물성에 좋지 못한 영향을 주기 때문에 유화체를 사용하지 않는 무유화체 유화중합의 필요성에 대두하게 되었다. 무유화체 유화중합의 시작은 1965년 Matsumoto[1] 등이 발표한 후 수천의 연구 보고가 있으나[2-3]. KPS만을 사용한 경우 latex 생성은 KPS의 분해에 의해 생성되는 SOI-ion이 monomer 입자에 부착되고 이 SOI-ion 상호간의 반발력은 계면 활성계의 유화체를 대신하여 생성 latex 입자를 안정화시키나 안정성이 유화체를 사용한 경우보다 작아 비교적 낮은 고형분산도에서만 안정된 latex를 얻을 수 있었다. 무유화체 유화중합에서 이온성 친수성 공단체 혹은 아미온성 친수성 공단체를 소량 사용하여 유화중합을 할 경우 친수성 공단체의 초기중 합물의 oligomer는 물에 용해되어 계면의 접성과 단
설을 전자계에 증대시켜 생성 latex를 안전한장으로 넣고 혼합 녹도를 10-30%까지 높일 수 있다고 보고 되었다[4-7]. 이와 관련하여 종합시험의 무유화제 St/BD 유화공중합에서 아크릴산 친수성 공단량체의 영향을 검토한 결과 AN이 가장 종합수율이 높고 또한 안전한 latex를 얻을 수 있음을 알 수 있었다. 따라서 본 연구에서는 AN을 비이온화 친수성 공단량체로한 St/BD의 무유화제 유화공중합에서 AN 녹도의 영향, 개시 농도의 영향, pH의 영향, 고형분 농도의 영향 및 합성된 토러의 기판 물성을 측정하였다.

2. 실험

2.1. 시약

Styrene(ST), Acrylonitrile(AN) 등은 일반적인 정제방법[9]을 통해 정제하였고, Butadiene(BD)는 금속식유화자의 정제과정에서 종합 방지제를 제거한 다음 드라이어로 액화시킨 후 사용하였으며, Potassium Persulfate(KPS), Sodium Bisulfite(SBS), NaOH, H2SO4 등은 시판 특급시약을 그대로 사용하였다. 그리고 중합에 사용된 물은 Millipore 정수기를 거친 증류수를 사용하였다.

2.2. 중합방법 및 중합수율 측정

1L stainless계 회전식 가압반응 용기에 정량의 탈아종수를 넣고, 60℃의 전온스테이트에서 30분간 용존산소를 구한 다음, SBS 용액, 유화전정제, St-Dodecylmecrapatan(TDMM), BD의 순으로 채우고, 50℃에서 1시간 동안 premulsion을 시킨 후, KPS 용액 일정량을 주사기로 정량 주입한 다음 50℃에서 교반속 회전수를 42rpm으로하여 중합을 계속하였다. 중합수율의 측정은 반응시간에 따라 반응물을 5ml 용 주사기로 취하여 Aluminum Dish에 담아 정량 후 Hydroquinone 1% 용액 1ml를 넣어 중합반응을 정지시켜, 100℃의 열풍건조기에 한량 건조시킨 후 중량법으로 중합수율을 구하였다[4].

2.3. Latex입입 및 입수자 밀도

Latex의 입입은 종합반응이 완전된 경우 세정 0.1-0.2ml로 1ml의 탈아종수에 뿌린 다음, 초음파세척기로 latex 입자를 고문 분산시키고, light scattering method를 채택하고 있는 Malvern사의 Autosizer RIC cell에 넣어 적정 농도로 맞춘 후, optics unit의 pin hole을 각 200μm로 한 다음 25℃에서 측정하였다. 여기서 구한 폴리머 입자의 평균 입경은 z-average mean diameter(Dz)로 나타난다. 입수자 밀도(Np)는 autosizer 데이터의 size class distribution으로부터 다음식을 이용하여 구하였다[6].

\[
D_n = \frac{\sum (N_n D_n^2)}{\sum N_n} \\
D_v = \frac{\sum (N_v D_v^3)}{\sum N_v} \\
D_s = \frac{\sum (N_s D_s^4)}{\sum N_s} \\
U = D_s / D_v \\
N_p = \frac{(6\pi W_m)}{\rho \lambda D_v^3 W_w}
\]

여기서

\(D_n\) : latex 입자 i의 입경
\(N_n\) : D의 입자를 가진 입수자 수
\(D_v\) : 수평균 입경
\(D_s\) : 중앙 평균 입경
\(D_s\) : z-평균 입경
\(U\) : 입경 분포
\(N_p\) : 입수자 밀도
\(X\) : 전환율
\(W_m\) : 단량체의 무게
\(\rho\) : 폴리머의 밀도
\(W_w\) : 물의 무게

2.4. Gel content 및 swelling index

SBR crumb(3g)에 밴덴(75ml)을 가해 실온에서 24시간 압착하여 방과한 다음, 100-mesh stainless화 면으로 캐스트하여 폴리머의 중량(a)을 닫고, 이 폴리머를 건조하여 얻은 밴덴 불용분의 무게(b)를 측정하고, 여약액 같은 방법으로 건조하여 얻은 밴덴 용해분의 무게(c)를 측정한 다음, 다음식에 따라 gel content 및 swelling index를 구하였다.

\[
gel\ content\ (\%) = \frac{b}{0.3} \times 100 = \frac{0.3-c}{0.3} \times 100
\]

\[
swelling\ index = \frac{a}{0.3-c} = \frac{a}{b}
\]

2.5. 물성 측정

Mooney Viscosity: SBR crumb 200g를 취하여 온도 50±5℃, 간격 1.4±0.2mm로 조정된 roll에 장기 지 않게 하여 1회부터 9회까지 집어서 통과시키고 10회의 그대로 통과시간 후, 시료를 실온에서 30
본관 방치한다. 이 시료를 자름 약 45mm 이상하게 2개 만들고 이 중 한개를 자름 10mm의 구멍을 뚫어 아래 다이에, 다른 한개는 위다이에 넣어 Monsanto Mooney Viscometer로 rotor의 회전속도를 2rpm으로 하여 측정하였다[10].

인장 시험: SBR crumb(600g), Carbon Black (300g), Stearic Acid(18g), ZnO(6g)을 Banbury Mixer로 165℃에서 6분간 혼합한 다음, Sulfur (10.5g), 1-Butylben-zothiazole Sulfenamide(6.0g)을 참가하여 Roll mill로 혼합하여 ASTM D-15의 9에 의거 가열 시트를 만든 다음, 3호형의 시험 장단기로 정탄하여 연신율, 300% modulus, 인장강도를 측정하였다[11].

경도 시험: 인장시험에서 제작된 시편을 Shore-A Hardness Tester로 측정하였다[12].

Rheometer: Monsanto Rheometer 100으로, cure time에 따른 torque의 최대값(MH)와 최소값(ML)을 구한 다음, MH와 ML의 차를 H라 할 때, 0.9 H(Tc 90), 0.5 H(Tc 50), 0.1 H(Tc 10)까지 걸리는 시간을 측정하였으며, 최소값 +1 unit까지 걸리는 시간(Tc1)을 구하였다[13].

3. 결과 및 고찰

3.1. AN 농도의 영향
무유화계 유화종합에서 친수성 공단량체(hydrophilic comonomer)의 역할은 공단량체의 Homogeneous Nucleation[14]에 의한 안정된 유화종합의 중합체의 안정화를 유지하는 것이라 볼 수 있다. 따라서 St/BD/AN계 무유화계 중합에서 중합체의 제작으로 파우삼을 사용하는 게이드로 이 파우삼은 수중에서 다음과 같이 분해하여 중합의 개시반응에 관여한다.

\[\text{SO}_3^2^- + \text{Monomer} + \text{O}_3^2^- \rightarrow \text{2OSO}_3^- \]

입자호위에 존재하는 OSO_3^- 이온의 산화반응력은 계면활성제의 유화를 대신하여 입자를 안정화시키게 된다. 친수성 공단량체인 AN의 역할은 반응 초기에 radical을 흡착, 중합하여 oligomeric radical을 생성함으로써 Homogeneous Nucleation되어 반응량을 계동함 뿐 아니라 수용성 oligomer의 계의 정도를 상승시켜서 염전성 colloid 형태로 소화되는 양을 보다 잘 보이며, 이를 측정하여 고찰하였다.

<table>
<thead>
<tr>
<th>Run Number</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, g</td>
<td>24.2</td>
<td>23.0</td>
<td>22.0</td>
<td>20.0</td>
</tr>
<tr>
<td>BD, g</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>KPS, 10^-3mol/l H_2O</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>SBS, 10^-3mol/l H_2O</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
<tr>
<td>Water, ml</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>AN, g</td>
<td>0.8</td>
<td>2.0</td>
<td>3.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table 1. Recipes of Soap-Free St/BD Emulsion Polymeri-zation with Variation of Comonomer(AN) Content

시험이나 실험은 시험을 보다 확실하게 처리하여 colloid의 안정성을 주로한다[15]. 이는 관계에 Latex의 생성속도 및 안정화 정도는 친수성 공단량체의 농도와 밀접한 관계를 지니고 있으므로 본 실험에서는 친수성 공단량체로 AN의 농도를 Table 1과 같이 변화시키면서 경향을 측정한 결과 Fig. 1과 같이 AN의 사용량이 증가함에 따라 전환율이 증가하였다. 공단량체의 사용량이 다른 종합속도(Rp, %/hr)는 Fig. 1의 전환율-시간의 그래프로부터 X(전환율) = A+Bln의 식을 미분하여 Fig. 2에 나타내었는데, Rp의 [AN]^n의 존재성은 전환율 10%일 때 n=1.617에서 전환율 50%일 때 n=1.05로 밀어내리를 보였다. Fig. 3에서 실험 수 뮤도(Np)의 [AN]^n의 존재성을 보다 최소자승법으로 구한 n=1.533으로 식 (1)에 보이는 Smith-
Fig. 2. Polymerization (R_p) vs. AN comonomer content at different conversion level: conv. 10% (●), conv. 20% (○), conv. 30% (□), conv. 40% (▲), conv. 50% (★).

Fig. 3. Logarithmic plot of particle number density (N_p) vs. AN concentration for A series.

Fig. 4. Effect of initiator concentration on time-conversion relationship for soap-free emulsion polymerization of SBR: B1 (★), B2 (▲), B3 (□), B4 (●), B5 (○).

Fig. 5. Polymerization rate (R_p) vs. KPS concentration at different conversion level: conv. 10% (●), conv. 20% (○), conv. 30% (□), conv. 40% (▲), conv. 50% (★).

Ewart가 제시한 case 2의 유화제를 사용한 유화중합에서의 계수 n=0.6보다 큰 값 를 나타내었다.
이는 이계의 유화중합의 유화제가 없는 AN comonomer에 의한 입자와 Homogeneous Nucleation에 의한 것으로 생각된다.

3.2. 개시제 농도의 영향
St/BD의 무유화체 유화중합에서 다른 중합변수는 Table 2와 같이 고정시키고 개시제의 농도만을 변화시킴으로써 실험한 결과 일반적인 유화중합에서와 마찬가지로 KPS 농도가 증가함에 따라 입자수 밀도 (N_p)는 증가하고 입경은 감소하였다. 전환율은 Fig. 4와 같이 증가하였다. 그리고 개시제 농도에 따른 중합속도 (R_p, %/hr)은 구해본 결과 Fig. 5와 같이 나타났으며, R_p의 [KPS]의 증가와는 반대로 전환율은 10%일 때 n=0.83에서 전환율이 증가함에 따라 점점 증가해간다.

Fig. 6. Logarithmic plot of particle number density (Np) vs. initiator concentration for B series.

Fig. 7. Time-conversion curve with variation of pH for soap-free emulsion polymerization of SBR : pH 1(●), pH 3(●), pH 5(●), pH 7(●), pH 9(△), pH 11(○).

3.4. Monomer 농도의 영향
무유화제 유화종합에서 단량체 농도의 영향을 조사해 보고자 Table 3의 조성으로 시간에 따른 전환율을 측정한 결과 Fig. 8과 같이 나타났다. 여기서 C1의 조성으로 중합했을 시 전환율 45% 정도에서 단량의 coagulum 생성으로 변연을 중단시켰는데, 이는 물에 대한 총단량체의 농도가 너무 커서 particle nucleation에서부터 입자의 성장속도가 너무 빠르고 고형 분산도가 높아 쉽게 불안정화된 것이라고 생각된다. 이를 제외하고는 일정한 중합시간을 비교해 본 때 물에 대한 단량체 농도가 증가함수록 증화율이 커질 수 있었다. 이와 같은 사항은 불균일적인 무유화 제 유화종합에서도 근일계 유화종합의 일반적인

<table>
<thead>
<tr>
<th>Run Number</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, g</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>BD, g</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>KPS, $x10^{-3}$mol/l H$_2$O</td>
<td>0.89</td>
<td>1.55</td>
<td>2.22</td>
<td>2.89</td>
<td>3.55</td>
</tr>
<tr>
<td>SBS, $x10^{-3}$mol/l H$_2$O</td>
<td>0.89</td>
<td>1.55</td>
<td>2.22</td>
<td>2.89</td>
<td>3.55</td>
</tr>
<tr>
<td>Water, mÅ</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>AN, g</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

가하여 전환율 50%에서 n=0.96을 보였다. 또한 개 시제 농도와 입자수 밀도와의 관계를 구해본 결과 Fig. 6과 같았으며, Np의 [KPS]n의존성은 n=0.733

이었다.

3.3. pH의 영향
Table 1의 A4의 실험조건으로 St/BD 무유화제 유화종합을 하였으며, pH를 1, 3, 5, 7, 9, 11로 조정하면서 중합체 전 및 Fig. 7과 같이 산이나 염기를 넣지 않은 pH=5일때 활성이 가장 높았다. 비이온화 친수성 총단량체인 AN계에서 latex 입자로 변에 친수 성기가 배향하여 적정한 이온상의 balance를 유지하여 충분한 반반벽을 부여해서 반반체의 안정성이 향상한다고 본다면, 산이나 염기의 참가는 latex 표면의 이런 이온상의 balance에 영향을 미쳐 기 때문에 latex의 안정성을 저하시키면서 전환율을 낮추 것으로 보인다.

Table 3. Recipes of Soap-Free St/BD Emulsion Polymerization with Variation of Water Content

<table>
<thead>
<tr>
<th>Run Number</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>St, g</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>BD, g</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>KPS, $x10^{-3}$mol/l H$_2$O</td>
<td>4.44</td>
<td>3.33</td>
<td>2.22</td>
<td>1.66</td>
<td>1.33</td>
</tr>
<tr>
<td>SBS, $x10^{-3}$mol/l H$_2$O</td>
<td>4.44</td>
<td>3.33</td>
<td>2.22</td>
<td>1.66</td>
<td>1.33</td>
</tr>
<tr>
<td>Water, mÅ</td>
<td>150</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>AN, g</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

공업화학, 제 4 권 제 2 호, 1993
Fig. 8. Time-curve with variation of water content for soap-free emulsion polymerization for SBR: C1(○), C2(●), C3(▲), C4(○), C5(★).

polymerization kinetics가 적용됨을 시사해주고 있고, 또한 종단량체 농도증가에 따른 천수성 종단량체인 AN의 농도증가와 더불어 수용액에서의 oligomeric ion radical 수의 증가에 의한 효과로 고형분 농도 33%에서도 안정성이 약화한 latex를 얻을 수 있었다.

3.5. Soap-free SBR의 용성

AN을 천수성 종단량체로하여 합성된 SBR 플러어의 용성을 비교해 보고자 Table 1의 A4 실험조건으로 전환율 60%에서 최수한 Styrene-Butadiene Latex를 10% NaOH로 용고시킨 후, 건조하여 SBR crumb를 만든 다음, 글로쉬측화(주)의 상용 SBR-1502와 몇가지 물성비교를 해본 결과 Table 4, 5와 같이 나타났다. 이 표에서와 같이 SBR-A4의 Tensile Strength, Elongation, 300% Modulus 등이 SBR-1502에 비해 떨어졌는데, 이는 Fig. 9에 보이는 것처럼 gel content(7.5%)에 의한 영향으로 생각되며, 따라서 상용 SBR 중 gel-free SBR의 용도인 타이어, 신발보다는 gel content를 70% 이상으로 하여 swelling index를 높고 다음 수지 등의 impact modifier로 사용하는 것이 적합할 것으로 보인다. 그리고 Rheometer data에 의하면 SBR-A4가 SBR-1502보다 가속도가 높게 빠른데, 이는 AN의 St/BD와의 중합 내지 그래프트 중합에 따른 가속점 증가에 의한 것으로 보이며, 또한 MH가 36 lb/in 정도밖에 되지 않아 고무가 부드러웠다.

Table 4. Comparison of Soap-Free SBR with Commercial SBR for Mechanical Properties

<table>
<thead>
<tr>
<th></th>
<th>cure time(min)</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>tensile</td>
<td>SBR-A4</td>
<td>177</td>
<td>179</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SBR-1502</td>
<td>266</td>
<td>273</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>strength(kg/cm²)</td>
<td>SBR-A4</td>
<td>440</td>
<td>390</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SBR-1502</td>
<td>563</td>
<td>476</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>elongation(%)</td>
<td>SBR-A4</td>
<td>120</td>
<td>134</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SBR-1502</td>
<td>131</td>
<td>166</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>300% modulus</td>
<td>SBR-A4</td>
<td>68</td>
<td>69</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>(kg/cm³)</td>
<td>SBR-1502</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>hardness</td>
<td>SBR-A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(shore-A)</td>
<td>SBR-1502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Comparison of Soap-Free SBR with Commercial SBR for Rheometric Properties

<table>
<thead>
<tr>
<th></th>
<th>SBR-A4</th>
<th>SBR-1502</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money Viscosity raw MV (ML,s,100)</td>
<td>66</td>
<td>52</td>
</tr>
<tr>
<td>compound MV (ML,s,100)</td>
<td>90</td>
<td>73</td>
</tr>
<tr>
<td>Rheometer MH(1b/in) (160℃)</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>ML(1b/in)</td>
<td>12.2</td>
<td>11.7</td>
</tr>
<tr>
<td>Ts1 (min)</td>
<td>3.7</td>
<td>4.5</td>
</tr>
<tr>
<td>Tr10 (min)</td>
<td>4.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Tr50 (min)</td>
<td>5.5</td>
<td>11.7</td>
</tr>
<tr>
<td>Tr90 (min)</td>
<td>10.1</td>
<td>19.2</td>
</tr>
</tbody>
</table>

4. 결 론

무유화제 유효중합에서 AN을 천수성 공단량체로 하였을 시, 다음과 같은 몇 가지 결론을 얻을 수 있다.

1. AN의 농도가 증가함에 따라 St/BD의 전환율은 증가하였으며, Rp의 [AN]의 의존성은 전환율 10%일때 n=1.617에서 전환율 50%일때 n=1.05로 떨어졌다. 그리고, 입장수 밀도 Np도 증가하였는데 [AN]의 의존성은 n=1.533이었다.

2. 개시제의 농도를 증가시켜갈 때, 시간에 따른 St/BD의 전환율은 증가하였으며, Rp의 [KPS]의 의존성은 전환율 10%일때 n=0.83에서 전환율 50%일때 n=0.96이었다. 그리고, 입장수 밀도(Np) 또한 증가하였는데 [KPS]의 의존성은 n=0.733이었다.

3. AN 천수성 공단량체를 이용한 St/BD의 무유화제 유효중합에서 pH=5일 때 전환율이 가장 높았다.

4. 농에 대한 공단량체의 양이 1/2일때 활성이 가장 좋았으며, 달걀제 농도가 짧아지면서 생성 latex의 불안정성 때문에 전환율을 높임 수 없었고, 붉어지면 천수성 공단량체의 의석 효과로 활성이 저하된 것으로 보인다.

5. 무유화제 유효중합으로 언어진 SBR-A4의 Tensile Strength, Elongation, 300% Modulus 등 기본물성은 상용의 SBR-1502보다 낮았으며, 가속속도는 빠른 데다.

참고문헌

8. H. S. Chung, C. S. Lee, and Y. J. Shin, Submitted to Polymer(Korea).
10. ASTM D1646
11. ASTM D15
12. ASTM D2240
13. JSR Manual