DOI QR코드

DOI QR Code

Vibration of elastic and viscoelastic multilayered spaces

  • Karasudhi, P. (School of Civil Engineering, Asian Institute of Technology) ;
  • Liu, Y.C. (School of Civil Engineering, Asian Institute of Technology)
  • Published : 1993.10.25

Abstract

The near field is discretized into finite elements, and the far field into infinite elements. Closed form far-field solutions to three fundamental problems are used as the shape functions of the infinite elements. Such infinite elements are capable of transmitting all surface and body waves. An efficient scheme to integrate numerically the stiffness and mass matrices of these elements in presented. Results agree closely with those obtained by others.

References

  1. Abramowitz, M. and Stegun, I.A.(eds.) (1965), Handbook of Mathematical Functions, Dover Publications, New York, 228-251 and 355-494.
  2. Apsel, R.J. and Luco, J.E. (1987), "Impedance functions for foundations embedded in a layered medium: An integral equation approach", Earthquake Eng. Struct. Dyn., 15, 213-231. https://doi.org/10.1002/eqe.4290150205
  3. Cagniard, L. (1962), Reflection and Refraction of Progressive Seismic Waves, E.A. Flinn and C.H.(tated and revised), McGraw-Hill, New York, 47-49.
  4. Erdeyi, A.,Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1954), Tables of Integral Transforms, 1, Mcgraw-Hill, New York, 8, 14, 64 and 72.
  5. Hsu, H.P. (1970), Fourier Analysis, Simon and Schuster, New York 107 and 119.
  6. Karasudhi, P. (1991), Foundations of Solid Mechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 197-203, 269-270 and 318-348.
  7. Karasudhi, P. and Liu Y.C. (1992), "Far-field waves in elastic and viscoelastic spaces", Recent Advances in Structural Mechanics-1992. edited by Kwon, Y.W. and Chung, H.H., ASME PVP-Vol. 248/NE10. 93-99.
  8. Keer, L.M., Jabali, H.H. and Chantaramungkorn, K. (1974), "Torsional oscillation of a layer bonded to an elastic half-space". Int. J. Solids Structures, 10, 1-13. https://doi.org/10.1016/0020-7683(74)90096-1
  9. Koppe, H. (1948), "Uber Rayleigh-Wellen and der Oberflache zweier Medien", Z. angew, Math. Mech., 28, 355-360. https://doi.org/10.1002/zamm.19480281105
  10. Liu, Y.C. (1992), "An infinite element algorithm for vibration of elastic and viscoelastic half spaces", D.Eng. Dissertation, Asian Institute of Technology, Bangkok, Thailand.
  11. Luco, J.E. (1974), "Inpedance functions for a rigid foundation on a layered medium", Nucl. Eng. Des., 31, 204-207. https://doi.org/10.1016/0029-5493(75)90142-9
  12. Luco, J.E. (1976a), "Torsional response of structures for SH Waves: The case of hemispherical foundations", Bull, Seismological Soc. America, 66 (1), 109-124.
  13. Luco, J.E. (1976b), "Vibrations of a rigid disc on a layered viscoelastic medium", Nucl. Eng. Des., 36, 325-340. https://doi.org/10.1016/0029-5493(76)90026-1
  14. Luco, J.E. and Westmann, R.A. (1971), "Dynamic response of circular footings", J. Eng. Mech, ASCE, 5, 1381-1395.
  15. Luco, J.E. and Westmann, R.A. (1972), "Dynamic response of a rigid footing bonded to an elastic halfspace", J. Appl. Mech., 39, 527-534. https://doi.org/10.1115/1.3422711
  16. Mita, A. and Luco, J.E. (1987), "Dynamic response of embedded foundations: A hybrid approach", Comput. Meths. Appl. Mech. Engrg., 63, 233-259. https://doi.org/10.1016/0045-7825(87)90071-5
  17. Rajapakse, R.K.N.D. and Karasudhi, P. (1986), "An efficient elastodynamic infinite element", Int. J. Solids Structures, 22, No. 6, 643-657. https://doi.org/10.1016/0020-7683(86)90028-4
  18. Stoneley, R. (1924), "Elastic waves at the surface of separation of two solids", Proc. Roy. Soc. (London), A, 106, 416-428. https://doi.org/10.1098/rspa.1924.0079
  19. Veletsos, A.S. and Nair, V.V.D. (1974), "Torsional vibration of viscoelastic foundation", J. Geotech. Eng., ASCE, 100, 225-246.
  20. Veletsos, A.S. and Verbic, B. (1973), "Vibration of viscoelastic foundation", Earthquake Eng. Struct. Dyn., 2, 87-102. https://doi.org/10.1002/eqe.4290020108
  21. Veletsos, A.S. and Wei, Y.T. (1971), "Lateral and rocking vibrations of footings", Soil Mech. Foundations, ASCE, 97(SM9), 1227-1248.
  22. Zhang, C.H. and Zhao, C.B. (1987), "Coupling method of finite and infinite elements for strip foundation wave problems", Earthquake Eng. Struct. Dyn. 15, 839-851. https://doi.org/10.1002/eqe.4290150705

Cited by

  1. Identification of the Hualien soil-structure interaction system vol.18, pp.6, 1999, https://doi.org/10.1016/S0267-7261(99)00016-0
  2. Free field ground motions at various depths derived from actual seismograph records by using elastodynamic infinite elements vol.37, pp.5, 2010, https://doi.org/10.1016/j.compgeo.2010.04.007
  3. DEVELOPMENT OF 3D ELASTODYNAMIC INFINITE ELEMENTS FOR SOIL-STRUCTURE INTERACTION PROBLEMS vol.04, pp.03, 2004, https://doi.org/10.1142/S0219455404001306
  4. Waves generated from fictitious focal points to match seismograms recorded vol.19, pp.2, 1996, https://doi.org/10.1007/BF02757785
  5. A Semi-Analytical Approach to Predict Ground Vibration by Identification of Soil Properties and Train-Transit Loads vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.1013
  6. DYNAMIC INFINITE ELEMENTS FOR SOIL-STRUCTURE INTERACTION ANALYSIS IN A LAYERED SOIL MEDIUM vol.07, pp.04, 2007, https://doi.org/10.1142/S0219455407002496
  7. Axisymmetric elastodynamic infinite elements for multi-layered half-space vol.38, pp.22, 1995, https://doi.org/10.1002/nme.1620382202
  8. Analytical frequency-dependent infinite elements for soil–structure interaction analysis in two-dimensional medium vol.22, pp.3, 2000, https://doi.org/10.1016/S0141-0296(98)00070-4