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A DUAL LIMIT THEOREM IN A MEAN FIELD MODEL

SANG Ho LEE*, CHI YONG KIM** AND JONG WOO JEON**

1. Introduction

Consider one particular problem of ferromagnetism in statistical me­
chanics. A ferromagnetic crystal can be considered to consist of n sites,
where n is a large integer. The amount of magnetic spin will be de­
noted by X}n), i = 1,2, ... , n. The magnetic spins at these n sites can

be modeled by a triangular array of random variables {X}n) : i =
1,2, ... , n}(n = 1,2, ... ). A standard model for the joint distribution of
the spin random variables (X~n), ... ,X~n») states that for any Borei set
A in Rn

(1.1) Pr[(X~n), ... ,x~n») E A]

~ d;' i exp[-{3· Hn(x" ... , xo )]gdP(x;),

where dn is a normalizing constant,P is a probability measure on RI and
1'(> 0) is a constant which plays the role of inverse temperature. The
function Hn is known as the Hamiltonian which represents the energy
of the body at the configuration (Xl, ... , x n ). The total magnetization

present in the body is given by Sn = L:7=1 X}n). When Hn takes the par­
ticular form Hn(XI, ... ,xn) = -(L:xi?/2n, the model (1.1) is usually
called the Curie-Weiss model in statistical mechanics literature.

In recent years, a number of results on the asymptotic distribution of
Sn = L:7=1 X~n) for this model have been established. Simon and Grif­
fiths(1973) obtained the asymptotic distribution of Sn when P is the
symmetric Bernoulli. Dunlop and Newman(1975) extended the result to
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the case where the spin random variables are vectors. In a two-paper se­
ries, Ellis and Newman(1978a, 1978b) extended the result of Simon and
Griffiths to a larger class of probability distributions which contains the
symmetric Bernoulli distribution. Jeon(1979) gave a simpler and sta­
tistically motivated proof of this result and Choi, Kim and Jeon(1989)
obtained similar limit theorem for a wider class of Hamiltonians. The
model considered by Choi, Kim and Jeon(1989) will be called the gen­
eralized Curie-Weiss model.

The purpose of this paper is to introduce the dual model of the gen­
eralized Curie-Weiss model and to establish a limit theorem for the dual
model. The generalized Curie-Weiss model and its dual model are de­
fined in Section 2 and the basic relationships between two models are
given in Section 3. In Section 4, we state and prove our main result. .

2. Generalized Curie-Weiss model and its dual model
In this section, we first define the generalized Curie-Weiss model and

its dual model and then develop some notations and definitions necessary
to describe our result. We also give some relationships between two
models which play an important role in obtaining our main result.

For a given probability measure-Q with <PQ (t) = f exp(tx )dQ(x) <
00 for all real t, let LQ be the class of probability measures P such that

(2.1) <pp(t) = Jexp(tx)dP(x) < 00 for all t

and

(2.2) J</>Q(x)dP(x) < 00.

Let {Xi n
) : i = 1,2, ... ,n}(n = 1,2, ... ) be a triangular array with

the joint distribution given by
n

(2.3) dJ.Ln(Xl,X2, ... ,xn) = d;;l . exp[mpQ(sn/n)] IT dP(Xi),
i=l

where P E LQ, 1/;Q (t) = log <PQ (t) is the cumulant generating function
of Q, dn is a normalizing constant and Sn = Xl +... + X n.

The model (2.3) defines the generalized Curie-Weiss model. See Choi,
Kim and Jeon(1989) for more details on this model.
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REMARK 2.1. By the convexity of t/;Q, the probability distribution
/-In is well defined for each n. When Q is standard normal, the gener­
alized Curie-Weiss model becomes the Curie-Weiss model in which case
the condition P E LQ is equivalent to that Jexp(x2 /2)dP(x) < 00.
This is exactly the same as the condition considered by Ellis and New­
man(1978b).

Let the distribution function FQ of probability measure Q be such
that

FQ(x) =0, x < a,

0< FQ(x) < 1, a < x < b,

FQ(x) = 1, b < x,

and let DQ = (a, b), where if desired a = -00 or b = 00, or both.
For given probability measures Q and P( E LQ), define

(2.4) GQP(u) = iQ(u) - t/;p(u) for all u,

where iQ(U) = sup[us - t/;Q(s)] is the large deviation rate of Q and
s

t/;p(u) = log c/>p(u) is the cumulant generating function of P.

REMARK 2.2. If Q is the standard normal, GQp(u) = u2 /2 - t/;p(u),
u E R. This is exactly the same as the function studied by Ellis and
Newman (1987b) in the Curie-Weiss model. The function GQP plays
an important role in determining the asymptotic behavior of the total
magnetization Sn for the generalized Curie-Weiss model.

DEFINITION 2.1. A real number m( E D Q ) is said to be a global
minimum for GQ p if

GQP(u) ~ GQP(m) for all u E D Q .

DEFINITION 2.2. A global minimum m for GQP is said to be of type
kif

(2.5)
C2k U2k

GQP(m + u) - GQP(m) = (2k)! + o(u
2k

) as u ~ 0 ,

where C2k = G~;:(m) is strictly positive.

When DQ = (-00,00), We have the following lemma due to Choi,
Kim and Jeon(1989).
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LEMMA 2.1. For a given probability measure Q, let P E LQ. Let
DQ = (-00,00). Then GQp(t) -t 00 as Itl-t 00. Thus, GQP has only a
:finite number of global minima.

In the generalized Curie-Weiss model, we first fix a probability mea­
sure Q. Then the model is defined for P E LQ. Interchanging the roles
of P and Q in the model (2.3), we define the dual of the generalized
Curie-Weiss model as

n

(2.6) dJL~(xl, X2,· .. , xn) = D;;l . exp[mpP(sn/n)J II dQ(Xi),
i=l

where D n is a normalizing constant and 'l/Jp is the cumulant generating
function of probability measure P.

REMARK 2.3. The dual model is also well defined by the similar
reason stated in Remark 2.1 and the following lemma.

LEMMA 2.2. For a given probability measure Q, let P E LQ. Then
QE L p .

Proof. By the Fubini's theorem,

J4>p(y) dQ(y) = JJexp(y· x) dP(x) dQ(y)

= J4>Q(x)dP(x) < 00.

For the dual model, let Fp ( x), the distribution function of P, be such
that

Fp( x) = 0, x < c,

o< Fp(x) < 1, c < x < d,

Fp(x) = 1, d<x,

and let D p = (c,d), where -00::; c < d::; 00.

The function corresponding to GQP of the original model is defined by

(2.7) for all u,

where 1'P(u) = sup[us - "pp(s)] is the large deviation rate of P.
8
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3. Some relationships between generalized Curie-Weiss
model and its dual.

In this section, we study some properties of 'YQ, the large deviation
rate of probability measure Q, and give the relationship between the
functions GQP and GpQ defined in (2.4) and (2.7) respectively. We first
state the lemma due to Daniels(1954).

LEMMA 3.1. Let the distribution function F(x) be such that F(x) =
o for x < a, 0 < F(x) < 1 for a < x < (3, F(x) = 1 for (3 < x,
where if desired a = -00 or f3 = 00, or both. Suppose that the moment
generating function of F converges for all t, i.e.,

<p(t) = exp{1f(t)} = f: etx dF(x) < 00 for all t.

Then, for every ~ in a < ~ < {3, there exists a unique solution to of
1f'(t) = ~. And as t increases from - 00 to 00, 1f'(t) increases continuously
from ~ = a to ~ = (3.

Let P E LQ. Then Q E L p by Lemma 2.2. Thus, by Lemma 3.1, for
each u E DQ, 1fq(t) = u has a unique solution and, for each u E D p,
1f'p(t) = u also has a unique solution. Furthermore we have the following
useful equations:
for any u E DQ,

(3.1)

and

(3.2)

Note that (3.1) and (3.2) still hold for 'YP(u) and 'Y'p(u) if we replace the
subscript Q by P.

LEMMA 3.2. Let GQP(u) and GPQ(u) be defined as in (2.4) and (2.7).
Then we have

(3.3) GQP(u) = (GPQ 0 1f'p)(u) + (1fQ 0 1f'p)(u)

- (1fQ 0 7j1'Ql)(U) +u· GQp(u), u E DQ,
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(3.4) GPQ(u) =(GQP 0 tPQ)(u) + (tPP 0 tPQ)(u)

- (tPP 0 tP'pl )(u) +u· GpQ(u), U E Dp.

Proof. We have only to prove (3.4) by symmetry. For any U E D p ,

GpQ(u) =IP(u) - tPQ(u)

=u· tP'pl(u) - (tPP 0 tP'pl)(u) - tPQ(u) by (3.1)

=u· tPQ(u) - tPQ(u) - (tPP 0 tPQ)(u) + (tPP 0 tPQ)(u)

- (tPP 0 tP'pl)(u) +u· tP'pl(U) - u· tPQ(u).

Since [(I x tP'Ql) otPQ](u) = U·tPQ(u), where lex) = x, we can write, by
(3.1),

U·tPQ(U) - tPQ(u) - (tPP 0 tPQ)(u)

= [(I X tP'Ql - tPQ 0 'l/J'QI - 'l/Jp) 0 tPQ](u)

= (GQP 0 'l/JQ)(u)

and, by (3.2), GpQ(u) = tP'i,1(u) - tPQ(u) for each U E Dp.

THEOREM 3.1. Let m be a global minimum for GQp. Then tPQ -1 ( m )

= tP'p(m) (= mD , say) and m D is a global minimum for GpQ . Con­
versely if m D is a global minimum for GPQ, then tP'pl(m D ) = tPQ(mD )

(-m, say) and m is a global minimum for GQP. Furthermore GQP(m) =
GpQ(mD ).

Proof. By symmetry we prove only the first case. Assume that m is
a global minimum for GQP. Then, since GQP(u) = tP'Ql (u) - tP'p(u) by

(3.2), GQp(m) = tP'Ql(m)-tPp(m) = O. Thus tP'Ql(m) = tP'p(m) = mD ,

say. Since tPQ(mD ) = m, GQP(m) = GpQ(mD ) is obtained immediately
by Lemma 3.2.

Now, we will prove that m D is a global minimum for GPQ. By Lemma
3.2 and Taylor's expansion, for any U E Dp , we have

(3.5)
GpQ(u) =(GQP 0 tPQ)(u) + (tPP 0 tPQ)(u)-(tPP 0 tP'pl)(u) + u.GpQ(u)

=(GQP 0 'l/JQ)(u) + 'l/JJ,[tP'pl(U) - (}. GpQ(u)]. (GpQ(u))2/2,
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(3.7)

where 0 < () < l.
By the assumption that m is a global minimum and by (3.5), we have,

for any U E Dp,

(3.6) GpQ(mD
) = GQP(m) ~ (GQP 0 1jJQ)(u) ~ GpQ(u).

This completes the proof of Theorem 3.l.

THEOREM 3.2. Assume that GQP has the unique global minimum of
type k at m and

inf GQP(u) < min {liminfGQP(u), liminf GQP(U)} .
uEDQ u-+a u-+b

Then G PQ bas the unique global minimum of type k at m D = 1jJ~ (m )

d · hi G(2k)( D) [01,11 ()]-2k b G(2k)( )an In t s case PQ m = C2k 'f/p m , were C2k = QP m .
Furthermore

(3.8) inf GpQ(U) < min {liminfGpQ(u), liminf GPQ(U)}.
uEDp u-+c u-+d

Proof. Since m is the unique global minimum, the inequalities in (3.6)
hold strictly for U f= mD and U E D p. Hence mD = 1jJ~(m) is the unique
global minimum for GpQ. Since GQP has the unique global minimum
of type k at m,

(3.9)

and

2kC2k . U 2k
GQP(m + u) - GQp(m) = (2k)! + o(u ) asu--tO

(3.10)
2k-l

GQ
' p(m + u) = C2k . U + ( 2k-l) 0

(2k-1)! au asU--t,

(2k) )where C2k = GQP (m > O.
And by the duality of GQP and G PQ and by (3.6), for any U E DQ,

(3.11) (GPQ 0 1jJ~)(u)

= GQP(u) _1jJQ[1jJ'Ql(u) - 'IJ' GQp(u)](GQp(u)/2)2,
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where 0 < 'f} < l.

From (3.9), (3.10) and (3.11), we have

(3.12)

(GpQ 0 1/J~)(m + u) - GPQ(mD)

= GQP(m + u) - GQp(m) -1/JQ[1/J'Ql(m +u) - 'f}{1/J'Ql(m + u)

-1/J~(m +u)}] X (GQp(m +u»2/2

C2k· u2k 01." ( D) (C2k)2· u2(2k-l) (2k)
(2k)! - 'f/Q m . {(2k -1)!}2 .2 + 0 u as u -+ 0

2k
C2k . u + ( 2k) as u -+ o.

= (2k)! 0 u

Since 1/J'i/(mD + u) -1/J'pl(mD) = (1/J'pl)'(mD). u + o(u) as u -+ 0,
we have

by (3.12)

h ' G(2k)( D) [01. 11 ( )]-2kwere C2k = PQ m = C2k 'f/P m .

Finally, we prove the inequality (3.8). By Lemma 3.1 and Theorem 3.1,
there exist 6 and e2 (a ::; el < m < 6 ::; b) such that lim1/JQ(u) =

ulc

6 and lim1/JQ(u) ~ 6·
uld

By assumption (3.7) and by the fact that GQP(m) = inf GQP(u) is
uEDQ
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GPQ(mD
) = GQP(m) < min{liminfGQP(t), liminfGQP(t)}

t--6 t--6

- min{liminf GQp[1j1Q(U )], lim inf GQP[1j1Q(u)]}
u--c u--d

< min{liminfGPQ(u),liminfGpQ(u)} by(3.5).
u--c u--d

4. Main result

Let the distribution function F and the moment generating function
<j>(t) of F be such as in Lemma 3.1. Further let 1j1(t) and "Y(t) be the
cumulant generating function and the large deviation rate of F respec­
tively.

Let {Yn } be a sequence of independent and identically distributed
random variables with common distribution function F and f n be the
probability density function of L:~=l ~/n.

For certain classes of densities, Daniels(1954) proved the uniform local
limit theorem for 2:7::1 ~/n as follows;

(4.1) fn(x) = [ncr-l(t) ·exp[-n"Y(x)][l +0(1)] as n -+ 00v2,;

holds uniformly in xED = (a,(3) = {t/J'(t)lt E R}, where t/J'(t) = x and
a2 (t) = 1j1"(t).

Now we will state our main result.

THEOREM 4.1. Let P and Q be probability measures which satisfy
h di · ( ) L {X(n) X(n) X(n)} d {XD(n) XD(n)t e con tlon 4.1. et l' 2 , ... , n an 1 '2 , ... ,

X~(n)} be triangular arrays of dependent and identically distributed
random variables with joint distributions dJ.Ln and dJ.L~ given by (2.3) and
(2.6) respectively. Assume that GQP has the unique global minimum of
type k at m and also assume

(4.2) inf GQP(u) < min{liminfGQP(u),liminfGQp(u)}.
uEDq u--a u--b
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(4.3)

and

(4.4)

Sn -nmD

mDnl-ik
1

SD- nmn d
--+

{
N(O,~ + c12)'

exp{ _C12kZ2k j(2k)!},

if k = 1

if k 2: 2,

if k = 1

if k 2: 2,

where m D = tPp(m), m = tPQ(mD), mp = tP'P(m), ml = tPQ(m D),

G(2k)( ) I G(2k)( D) S ,\,n X(n) d SD ,\,n XD(n)C2k = QP m , C2k = PQ m , n = L...i=l i an n = L...i=l i .

Proof. Since Q satisfies the condition (4.1), we can express the joint
distribution f.ln as follows;

dP.n(X}'X2"·. ,xn)

~ d~' exp { ntp'll ~>/n) } IIdP( x;)

= d~' [j exp {(~»U}f,(U)dU]IIdP(x;)

~ d~'n-AJ[ll exp{x;(m + zn- A ))dP(X;)] f.(m + zn-A )dz

1 1 k-l
= d;; (27r)-"2n 2iO

X J[ll exp{X;( m + zn- A) - ,pp(m + zn- ,'. ))dP(X;)]

X exp [-nGQp(m + zn- A )] (j-l(tn)[l + o(l)]dz,

where tPQ(tn) = m + zn- 2
1
k and (j2(t n) = tPQ(tn)'

Thus we have

(4.5) df.ln(X}'X2, ... ,xn) = K;;l JIT dMn,z(Xi)' hn(z)dz,
t=l
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and

dMn,zCx) = exp [x(m+zn- 21k ) - 'l/Jp(m+zn- 21k )]dP(x),

hn(z) = exp [ - n{GpQ(m + zn-tq

- GpQ(m)}]u- l (tn)[l + 0(1)],
1. k-1

K n = dn(27r) 2 n-2J< exp{nGQp(m)}.

Since JRn dpn(x}, Xz, .. . , xn) = 1 and JdMn,z(Xi) = 1 for each i, we
have K n = Jhn(z)dz. Thus h~(z) = K;;lhn(z) is a probability density
function for each n.
Now, as n -+ 00

log E Mn .• [exp{tn-(I-dt-) Sn}]

= n {'l/Jp(tn-(I-A) + m + zn- A ) - 'l/Jp(m + zn- A )}

= n {'l/Jp(m+ zn- 21k )tn-(1-2
1
k) + ~'l/J~(m + zn- 21k )tZn-(Z-t) + o(n- I )}

= nAt'ljJp(m) + 'ljJ~(m)tz + ~n-(I-t)e'ljJ~(m) + 0(1)

This shows that, under Mn,z ,

(4.6)
S - nmD d{N(Z, ~),n m 11--+mpn l -2Jt c5(s-z),

if k = 1

if k ~ 2

where m D = 'ljJp(m) , mp = 'l/J~(m) and c5(x - xo) is a point mass at xo.
The representation (4.5) of dpn shows that we can introduce a random

variable Vn with the probability density function h~(z) such that, given

Vn = z, the X~n)'s are independent and identically distributed random
variables with the distribution dMn,zCx). It is now easy to obtain the
limiting distribution of (Sn -nmD)jmpnl - A, given Vn = z, by showing
that the moment generating function converges to a moment generating
function as described above.
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By Lemma 3.3 and Lemma 3.4 of Choi, Kim and Jeon(1989), we have,
as n --+ 00,

(4.7) h~(z) ---+ h*(z) for each z

where h*(z) = exp{ -C2kZ2k /(2k)!}/ Jexp{ -C2kZ2k /(2k)!}dz.
By applying Theorem 2.1 of Sethuraman(1961), (4.6) and (4.7), the

proof of (4.3) is completed.
Since P also satisfies the condition (4.1), we also obtain (4.4) by Theorem
3.2 and the proof is completed.

REMARK 4.1. In the special case D Q = (-00,00), we can dispense
with the assumption (4.2). In this case the assumption (4.2) is automat­
ically satisfied by Lemma 2.1.

5. Example

Let Q be the standard normal distribution and P be the triangular
distribution on (-2b, 2b) with b = fil2. Then the models (2.3) and
(2.6) become, respectively,

n

(5.1) dJ.ln(Xl, X2, ... , x n ) = d;;l exp{s~/2n} II dP(Xi)
i=l

and

Clearly P E LQ and the uniformity condition (4.1) for Q holds. Since
DQ = (-00,00), the condition (4.2) is satisfied [ see Remark 4.1 }.
The uniformity condition (4.1) for P was also shown to be satisfied by
Daniels(1954) [ see Example 7.4 there ].

Since iQ(U) = u2/2 and "pp(u) = 21og[sinh(bu)/bu]2,GQP is even
function and GQP(O) = o. And since GQp(u) = U - 2[ coth(bu) . b­
l/u] > 0, for all u > 0, m = 0 is the unique global minimum for GQP.
Furthermore it can be shown by simple calculation that

GQP(O) = "pp(O) = 0,
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GQp(O) = 1 - tP'P(O) = 0,

GQp(O) - -tP'P(O) = 0,

G~~(O) = -{ 4>~)(0) - 3} = 3/5 > O.

Thus GQP has the unique global minimum m = 0 of type 2. By Theorem
3.2, GPQ also has the unique global minimum of type 2 at m D = tPp(O) =

oand c~ = G~b(O) = G~~(0)[tP'P(O)t4 = 3/5. Since mp = tP'P(O) = 1
and ml = tPQ(O) = 1, we have, by Theorem 4.1,

3 d 4 D 3 d 4Sn/n 4 ---t exp{-z /40} and Sn /n 4 ---t exp{-z /40}.
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