figures reveal almost identical curves. It is therefore suggested that the effect of a surfactant on ion aggregates can be equally analyzed either with the relative fluorescence quantum efficiency or with the R.

In the absence of borates, Rh6G$^+$ apparently shows essentially no association with CTAB. Rh6G$^+$ is electrostatically repelled from CTAB or its micelle, and exists predominantly as monomeric species as evidenced further by no spectral shifts. In the presence of borate anions, however, it is quite possible that borates may be incorporated into the micellar media.

Contrary to TX-100, however, TPB$^-$ has the largest values among three borates at all [CTAB], which may be interpreted in terms of the ionic interaction between CTAB and borate anions. That is, since TPB$^-$ has the strongest ionic interaction among three borates, its ion aggregates dissociate more easily, resulting in larger R and relative fluorescence quantum efficiency. However, the effect of hydrophobicity should not be neglected, although it may be difficult to determine its contribution to the overall dissociation. It seems certain that the smaller the hydrophobicity of a borate anion is, the easier the dissociation of ion aggregates becomes upon the addition of CTAB. The order of hydrophobicity obtained above partially supports the result in Figure 6 and 7. The ion aggregates with TPB$^-$ appears to be completely dissociated well before the cme (9.2 x 10$^{-4}$M) of CTAB, whereas approximately 8.0 x 10$^{-3}$M and 3.0 x 10$^{-4}$M CTAB are required to dissociated completely the ion aggregates with TFB$^-$, and TFBP$^-$, respectively. Thus, it may be concluded that the hydrophobicities of the borates studied are increasing in the order TPB$^-$ < TFB$^-$ < TFDPB$^-$.

Acknowledgement. We are grateful for the financial support of this work by the Korea Science and Engineering Foundation and in part by the Basic Science Research Institute Program, the Ministry of Education, 1988.

References

Dipole Moment Derivatives and Infrared Intensities in Chloromethanes

Kwan Kim, Hyun Sik Kim, Myung Soo Kim, and Hojung Kim

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742. Received November 28, 1988

The results of ab initio (MP2/6-31G) molecular orbital calculations of the dipole moment derivatives and gas phase IR intensities in chloromethanes are reported. The theoretical polar tensors are analyzed into the net charge, charge-flux, and overlap contributions. The charge-flux contribution was found to be dominant in the CI atom polar tensor, while the net charge effect was the most prominent contribution for the H atom polar tensor. The CI atom polar tensor appeared, in a good approximation, to be transferable among various chloro molecules. On the other hand, for the prediction of IR spectra of complex hydrocarbons containing chlorine atoms, some empirical adjustment of the H atom polar tensor seemed to be made depending on the number of CI atoms bound to the certain carbon atom.

Introduction

The determination of the absolute intensities of infrared absorption bands is one of the most fundamental methods in studying the structure and electronic properties of polyatomic molecules. As the integrated intensity is intimately related to the electronic charge movements during vibration, the measurement of infrared intensities has been a powerful tool in understanding the charge distribution in molecules and their redistributions during vibration.

One of the fundamental challenges facing a vibrational molecular spectroscopist is to predict the spectrum of a new
molecule from a knowledge of the spectra of a set of similar model compounds. A great deal of empirical experiences exist to help us predict semiquantitatively the frequencies of characteristic fundamental modes, and we understand how to carry out normal coordinate analyses to predict, in principle, the normal frequencies for all the fundamental modes of the new molecule using force constants transferred from model compounds. However, the prediction of the intensities is much more challenging.

This challenge has been the basis for many of the intensity studies made in the past. The most successful models for predicting intensities of new molecules from intensity parameters transferred from simple model compounds are the electro-optical parameter (EOP) model and the atomic polar tensor (APT) concept. Successful predictions of vibrational band intensities for new molecules have already been made and the possibilities for future successful extensions of these methods seem very promising indeed.

Newton et al. used the APTs for H and F atoms of CH₂F to predict the intensities of the fundamental vibrations of other fluoromethanes. The predicted values agreed with the experimental values within a factor of two, and often were much better. On the other hand, Galabov et al. found that most comparable EOPs for various fluoromethanes differed in magnitude and were therefore not transferable. There is no obvious a priori reason that the APTs of H and F atoms should be transferable among the fluoromethanes. In order to rationalize these observations, and to discover the relevance to the interpretation and prediction of vibrational line strengths, the dependence of polar tensors upon molecular structure must be examined in detail. To this end, we have previously performed theoretical analyses on the dipole moment derivatives and the IR intensities of the fundamental vibrations of fluoromethanes. In that study, the effective term-charge has been defined, and the hydrogen atom effective term-charge appeared to be transferable among the fluoromethane molecules. In the semi-empirical limit, the fluorine atom effective term-charge also seemed to be insensitive to the detailed molecular structure.

As an extension of the previous work on fluoromethanes, we report here the theoretical analyses on the IR intensities of the fundamental vibrations of chloromethanes. The quantum mechanical results are analyzed for the charge-charge flux-overlap (CCFO) electronic contributions to the dipole derivatives.

Calculations

The polar tensor for an atom σ in a molecule, P_{σ}, is defined as

$$P_{\sigma}=\nabla \cdot \mathbf{p}_{\sigma} = \begin{bmatrix} \partial P_x/\partial x_{\sigma} & \partial P_y/\partial y_{\sigma} & \partial P_z/\partial z_{\sigma} \\ \partial P_x/\partial y_{\sigma} & \partial P_y/\partial y_{\sigma} & \partial P_z/\partial z_{\sigma} \\ \partial P_x/\partial z_{\sigma} & \partial P_y/\partial z_{\sigma} & \partial P_z/\partial z_{\sigma} \end{bmatrix}$$

Here P_{σ}, etc., is the σ component of the dipole moment and x_{σ}, y_{σ}, z_{σ}, are the space-fixed Cartesian coordinates locating the σ atom.

The detailed description of how the fundamental intensities are derived from the APTs (or vice versa) is given elsewhere. Briefly, once the APTs are given in the correct molecular coordinate frames, the P_{σ} matrix (composed of the Cartesian components of the dipole moment derivatives with respect to the normal coordinates) is calculated by

$$P_{\sigma} = P_{\sigma}AL$$ \hspace{1cm} (2)

Here P_{σ} is the $3\times3\times n$ matrix composed of the n juxtaposed 3×3 APTs, A is the symmetrized A matrix (the inverse of the Wilson's B matrix), and L is the symmetrized normal coordinate transformation matrix. The integrated band area is related to the P_{σ} elements, $\partial P_{\sigma}/\partial Q_{\sigma}$, by

$$A_{\sigma}=\left(974.8644\right)\left(\partial P_{\sigma}/\partial Q_{\sigma}\right)^4$$ \hspace{1cm} (3)

in (km mol⁻¹) if $\partial P_{\sigma}/\partial Q_{\sigma}$ is an en \(^{-1}\) (here σ designates atomic mass units, and e is the charge on the electron: $1e=1.602\times10^{-19}$).

In terms of the quantum mechanical CFCO model, the APT of an atom can be identified with three contributing parts:

$$P_{\sigma}^2 = \xi_1 I + \sum_{\nu} \left(\phi_{\nu}(R_a)\right) P_{\nu} = \sum_{\nu \neq a} \left(\phi_{\nu}(R_a)\right) (R)$$ \hspace{1cm} (4)

where ξ is Mulliken's net atomic charge, I is the unit diagonal tensor and

$$\phi_{\nu}(R_a) = \sum_{\nu \neq a} \langle \psi_\nu(R_a) | r_{\nu} | \psi_a(R_a) \rangle \phi_{\nu} N_{\nu}$$ \hspace{1cm} (5)

In eqn. (5), $r_{\nu} = r - R_{\nu}$ denotes a position vector relative to nucleus ν and N_{ν} denotes the structure dependent expansion coefficient when the electron density function is represented as a superposition of terms involving products of complete orthonormal functions, $\phi_{\nu}(R_a)$, centered on each nucleus. The first two terms in eqn. (4) may be associated with the classical charge-charge flux model, whereas the third term represents a quantum mechanical interference term, which is not amenable to a classical visualization.

The calculations are performed with the GAUSSIAN-82 program using the MP2/6-31G basis set. The geometries of chloromethanes were initially optimized. To obtain the elements of the APTs the numerical difference approximation $\Delta P_{\sigma} = \Delta P_{\sigma}/\Delta \omega$ is employed, with $\Delta \omega = 0.02$ Å. The force fields used in the normal coordinate calculations are taken from Duncan et al. for CH₂Cl and CH₃Cl, and from Ruoff and Burger for CH₃Cl. The experimental equilibrium structural data, taken from Duncan et al. for CH₂Cl and for CH₃Cl, and from Jend and Lide for CH₃Cl, were used in the normal coordinate calculations. The atomic masses are taken from Cohen and Taylor \(^{21}\), $m(^{1}H) = 1.007825$, $m(D) = 2.014102$, $m(C) = 12.0$, and $m(Cl) = 34.96885$. The coordinate axes and the molecular orientation of the chloromethanes used in the normal coordinate calculations are presented in Figure 1. The definitions of the internal and symmetry coordinates are listed in Table 1.
Table 1. Definition of the Internal and Symmetry Coordinates of the Chloromethane Molecules

| Internal coordinates | R1 = δ12, R2 = δ15, R3 = δ14, R4 = δ10, R5 = δa15, R6 = δa315, R7 = δ214, R8 = δ216, R9 = δ0214, R10 = δ2215 |

Symmetry coordinates

CH3Cl, CHCl2

A1
S1 = 1/2(R1 + R2 + R3)
S2 = S1
E
S4 = 1/2(R1 + R2)
S5 = 1/2(R3 + R4)
S6 = 1/2(R5 + R6)

CH2Cl2

A1
S1 = 1/3(R1 + R2)
S2 = 1/3(R3 + R4)
S3 = 1/3(R5 + R6)
S4 = 1/3(R7 + R8 + R9 + R10)
S5 = 1/3(R11 + R12 + R13 + R14)
S6 = 1/3(R15 + R16 + R17)
B1
S1 = 1/2(R1 + R2)
S2 = 1/2(R3 + R4)
S3 = 1/2(R5 + R6 + R7 + R8 + R9 + R10)
S4 = 1/2(R11 + R12 + R13 + R14 + R15 + R16)
S5 = 1/2(R17 + R18 + R19 + R20 + R21 + R22)
S6 = 1/2(R23 + R24 + R25 + R26 + R27 + R28)

Table 2. Atomic Polar Tensors of Cl and H atoms (in e)

<table>
<thead>
<tr>
<th>CH3Cl</th>
<th>CHCl3</th>
<th>CHCl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)</td>
<td>H(3)</td>
<td>C(2)</td>
</tr>
<tr>
<td>ab initio</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>exp</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>H(2)</td>
<td>H(3)</td>
<td>H(2)</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>ab initio</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Exp</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>H(1)</td>
<td>H(3)</td>
<td>H(1)</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>ab initio</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Exp</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>H(4)</td>
<td>H(3)</td>
<td>H(4)</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>ab initio</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Exp</td>
<td>0.09</td>
<td>0.09</td>
</tr>
</tbody>
</table>

For CH3Cl and CHCl3, taken from ref. 22 and ref. 23, respectively.

Results and Discussion

The quantum mechanically calculated APTs for the Cl and H atoms of the chloromethane molecules are listed in Table 2. The APTs for the atoms not shown in Table 2 can be obtained by the transformation equation, \(T^T R^T \), where \(T \) is the appropriate \(P^T \) or \(P^T \) tensor, \(R \) is the coordinate transformation matrix, \(R^T \) is its transpose, and \(T^T \) is the tensor in the rotated coordinate system.

The experimental APTs have been reported for CH3Cl and CHCl3, while those for CH2Cl2 have not yet been determined. In order to compare briefly the theoretical APTs with the experimental ones, we have included also in Table 2 the APTs of CH3Cl and CHCl3 derived from the analysis of experimental intensities.

It can be seen from Table 2 that the agreement between the theoretical values and the experimental values is, in general, quite good. The most noticeable exception occurred for the \(z \) element of the Cl-atom polar tensor in CH3Cl. There exists sign discrepancy between the experimental and calculated APTs. However, such a sign discrepancy may not be critical since the absolute value of the \(z \) element is not distinguishably greater than other elements.

The effective charge, defined as below, of hydrogen and fluorine fell within a very narrow range of values. The question naturally arises as to whether the fact that the effective atomic charges are independent of molecular structure is a peculiar property of H and F atoms or whether this is a more general phenomenon. Hence it would be very interesting to compare the chlorine atom effective charges of chloromethanes with one another.

The square of the effective atomic charge is defined as one-third of the sum of squares of the polar tensor components, that is

\[\chi^2_e = (1/3) \sum \chi^2 \]

The effective charge is thus independent of the signs of APT elements. The calculated effective charges of H atoms \((\chi_h)\) and Cl atoms \((\chi_c)\) in the chloromethanes appeared also to fall within narrow ranges of values. The observed \(\chi_h \) values are 0.07 and 0.05 for CH3Cl and CHCl3, respectively. The theoretical values are 0.09, 0.08, and 0.11 for CH3Cl, CH3Cl2, and CHCl3, respectively. The observed \(\chi_c \) values are 0.32 and 0.36 for CH3Cl and CHCl3, respectively. The theoretical values are 0.46, 0.44, and 0.41 for CH3Cl, CH3Cl2, and CHCl3, respectively. Although the theoretical values are somewhat larger than the experimental values, both the H and Cl atom effective charges seem to be rather insensitive to the particular chloromethane molecule. Clearly there is a need for more work on chlorine containing molecules, but our studies suggest the possibility of the existence of a surprisingly transferable set of intensity parameters for chlorine atoms.

It would then be worth to compare the Cl-atom polar tensors of various chloromethanes. For that purpose, we chose the \(z \)-axis along the C-Cl bond as shown in Figure 2. The APTs for the C(2) atoms in Figure 2 are listed in Table 3. It is seen from the Table that the \(z \) elements for CH3Cl, CH2Cl2, and CHCl3 are -0.55, -0.68, and -0.71, respectively.
Table 3. CCFO Analyzed Cl Atom Polar Tensors (in ϵ)

<table>
<thead>
<tr>
<th>F^c</th>
<th>Net charge</th>
<th>Charge-flux</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$Cl</td>
<td>[0.02, 0, 0]</td>
<td>[0, -0.17, 0]</td>
<td>[0, 0, 0.08]</td>
</tr>
<tr>
<td>CH$_3$C$_2$</td>
<td>[0, -0.06, 0.01]</td>
<td>[0, -0.19, 0]</td>
<td>[0, 0, 0.01]</td>
</tr>
<tr>
<td>CH$_3$C$_3$</td>
<td>[0, 0.10, 0]</td>
<td>[0, -0.20, 0]</td>
<td>[0, 0, 0.38]</td>
</tr>
</tbody>
</table>

The averaged values of the xx and xy elements are -0.19, -0.21 and -0.26e for CH$_3$Cl, CH$_3$C$_2$ and CH$_3$C$_3$, respectively. Hence it appears that the xx and xy elements are more sensitive to the detailed molecular structure than the zz elements.

From the similar theoretical calculations on the F atom tensors in fluoromethanes it was found that the zz elements for CHF$_3$, CH$_2$F$_2$ and CHF$_2$ are -0.89, -0.91 and -0.90e, respectively. The corresponding values for the $x(xy)$ elements are -0.43, -0.41 and -0.37e. The off-diagonal elements xz and yz in CHF, CHF$_2$ and CHF$_3$ seemed to be significant.

Above observations indicate that the Cl atom polar tensor is more sensitive to the molecular structure than the F atom polar tensor. Moreover, the contribution of off-diagonal elements to APT was observed to be more significant in chloromethanes than in fluoromethanes. That may be due to the more polarizable character of chlorine atom than fluorine.

In order to gain more information on the nature of Cl atom polar tensors in the chloromethane molecules, the CCFO electronic contributions to the dipole derivatives are computed by virtue of eqn. (4). The results for the Cl(2) atoms in Figure 2 are also represented in Table 3. It is seen from the Table that the charge-flux contribution is dominant for the Cl atom polar tensor. Its contribution is dominant particularly for the longitudinal components (zz elements). It is seen also that the off-diagonal elements in the Cl atom polar tensors are mainly due to the charge-flux contribution.

In the previous study on fluoromethanes it was observed that the net charge contribution is dominant for the F atom polar tensor. This is in contrast with the Cl atom polar tensor. For the Cl atom polar tensor, the net charge effect is not important compared to the charge-flux and overlap contributions. The present observation reveals that chlorine atom is indeed more polarizable than fluorine atom. That is, the electronic charge on the chlorine atom is more transferable from one nucleus to another as the result of nuclear displacement than that on the fluorine atom.

As mentioned previously, the overlap term is strictly a quantum mechanical term which has no classical analogue. This term arises solely from interference phenomena resulting from the superposition of wavefunctions. It is also interesting to observe that the overlap term is the least important term in the F atom polar tensors of fluoromethanes while this term is as important as the charge-flux term in the Cl atom polar tensors of chloromethanes. It appears that the quantum mechanical interference phenomena become more distinct as the charge-flux contribution increases, and less distinct as the net charge effect increases.

It would be worth to note that the charge-flux and overlap terms in the Cl atom polar tensor are rather transferable among the chloromethane molecules. In particular, the zz element of the charge-flux term and the diagonal elements of the overlap term are surprisingly invariant to the detailed molecular structure. Since the net charge effect is rather unimportant, above observation suggests that the APT of Cl atom would also be transferable among various chloromolecules as the F atom polar tensor. The average values of the zz and $x(xy)$ elements in the quantum mechanically calculated APTs of Cl atoms are -0.68 and -0.22e, respectively. These values are supposed to be useful in the prediction of the band intensities in the complex chloro molecules.

In order to assess more firmly the relative importance of each of three CCFO contributions for a given tensor we may define, as previously, the quantity

$$\xi^2 = \frac{1}{3} \sum \left(\frac{\partial P_\delta}{\partial x_\alpha} \right)^2 + \left(\frac{\partial P_\delta}{\partial y_\beta} \right)^2 + \left(\frac{\partial P_\delta}{\partial z_\gamma} \right)^2$$

as the square of the "effective term-charge". According to the present calculations, the effective term-charges of the chlorine atom in CH$_3$Cl are 0.10, 0.60 and 0.28 e, respectively, for the net charge, charge-flux and overlap contributions. The corresponding values for CH$_3$C$_2$ are 0.01, 0.64 and 0.28e, and for CHCl$_3$ 0.10, 0.66 and 0.27e. As expected, the effective term-charge of the charge-flux term is considerably larger than others.

The effective term-charge of the overlap term is indeed insensitive to the molecular structure. Its value can be taken to be 0.28 e. On the other hand, the charge-flux contribution increases smoothly with the number of Cl atoms bound to the central carbon atom. The variation is not significant, however, the average value being 0.63 e. The effective term-charge of the net charge term is supposed to be less than 0.1 e. Hence, it appears that the dipole moment changes in the chloromethane molecules during the chlorine atom displacement contain the charge-flux contribution by -60%, the overlap contribution by -30%, and the net charge effect by less than 10%.

Although the net charge contribution to the Cl atom polar tensor is not significant, it would also be worth to mention that the value of the element of the net charge tensor for
chloromethanes (see Table 3) increases with the number of Cl atoms bonded to the central carbon atom. That is, the element is -0.10 e when there is not any Cl atom neighbor, nearly zero when there is one neighbor of Cl atom, and 0.10 e when two Cl neighbors are present. Such a subtle variation may also be involved in the theoretical prediction of the fundamental band intensities of various chlorine atom containing hydrocarbons.

In order to compare the H atom polar tensors of various chloromethanes, we chose the z-axis along the C-H bond as shown in Figure 3. The APTs for the H(2) atoms in Figure 3 are computed, and the calculated results are listed in Table 4 along with the CCFO contributions. It is seen from the Table that the H atom polar tensor seems not to be transferable among the chloromethanes. In this respect, the effective charge may be regarded as a more proper parameter than APT for analyzing infrared band intensities. Hence, it appears that, for the prediction of IR spectra of complex hydrocarbons containing chlorine atoms, some empirical adjustment of the H-atom polar tensor should be made depending on the number of Cl atoms bound to a central carbon atom.

The non-transferability of H-atom polar tensor seems to arise from the composite effect of three CCFO contributions. Differently from the case of Cl atom polar tensor, the net charge contribution is dominant for the H atom polar tensor. The net charge effect increases smoothly with the number of Cl atoms bound to the central carbon atom. The most irregular pattern is seen in the yz elements of the charge-flux and overlap terms of CH2Cl. Their absolute values are considerably smaller than the xz elements. Moreover, they are substantially smaller than the yz elements of CH3Cl and CH3F. Hence, it appears that, as the H atom displaces into a direction perpendicular to the C-Cl bond, the dipole component is slightly affected by the charge-flux and quantum mechanical interference contributions.

The effective term-charges of hydrogen atom in CH2Cl are 0.22, 0.14 and 0.11 e for the net charge, charge-flux, and overlap contributions, respectively. The corresponding values are 0.27, 0.18 and 0.14 e for CH3Cl, and 0.32, 0.24 and 0.15 e for CH3F. None of the three groups of terms can be completely neglected. All of the three contributions increases as the number of Cl atoms bound to the central carbon atom increases.

In the previous ab initio calculations on fluoromethanes, the effective term-charges of hydrogen atom in CH3F were obtained to be 0.16, 0.10 and 0.12 e for the net charge, charge-flux and overlap contributions, respectively. The corresponding values were 0.17, 0.09 and 0.16 e for CH2F2 and 0.20, 0.09 and 0.20 e for CHF3. Both the net charge and the charge-flux contributions were nearly comparable among the molecules. The overlap contribution increased smoothly as the number of F atoms bound to the central carbon atom increased.

It appears that the overlap contributions are rather comparable between fluoromethanes and chloromethanes. Both the net charge and the charge-flux contributions are, in turn, more important in chloromethanes than in fluoromethanes.

Table 4. CCFO Analyzed H Atom Polar Tensors (in e)\(^a\)

<table>
<thead>
<tr>
<th>(p_x)</th>
<th>CCFO contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Net charge})</td>
<td>(\text{Charge-flux})</td>
</tr>
<tr>
<td>CH3Cl</td>
<td>-0.05</td>
</tr>
<tr>
<td>CH2Cl</td>
<td>0</td>
</tr>
<tr>
<td>CHCl</td>
<td>-0.06</td>
</tr>
<tr>
<td>CH3F</td>
<td>0</td>
</tr>
<tr>
<td>CH3F</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

\(^a\) APTs correspond to the H(2) atoms in Figure 3.
Table 5. Calculated and Observed Intensities (km mol⁻¹) of Chloromethanes

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Wave-number¹</th>
<th>Intensity (km mol⁻¹)</th>
<th>Molecule</th>
<th>Wave-number¹</th>
<th>Intensity (km mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂Cl₂</td>
<td>v₁</td>
<td>2998</td>
<td>6.2</td>
<td>9.9</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td></td>
<td>v₂</td>
<td>1434</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₃</td>
<td>713</td>
<td>24.4</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₄</td>
<td>282</td>
<td>1.5</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₅</td>
<td>1153</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₆</td>
<td>3055</td>
<td>0.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₇</td>
<td>808</td>
<td>1.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₈</td>
<td>1268</td>
<td>76.8</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v₉</td>
<td>739</td>
<td>163.5</td>
<td>95.0</td>
<td></td>
</tr>
</tbody>
</table>

¹observed values: for CH₂Cl and CD₂Cl, taken from ref. 27; for CHCl₃ and CDCl₃ from ref. 28; for CH₂Cl₂ and CD₂Cl₂ from ref. 29. ²Taken from ref. 30 for CH₂Cl₂, from ref. 23 for CHCl₃ and CDCl₃, and from ref. 31 for CH₂Cl₂ and CD₂Cl₂.

other hand, both the isotropic invariance and the physical constraint methods can not usually be applied to the determiniation of the sign of \(\Delta \mathcal{P}/\mathcal{Q} \), because of the paucity of the experimental data available.

For CH₂Cl(CD₂Cl) and CHCl₃(CDCl₃), both of which belong to the C₃ point group, \(\Delta \mathcal{P}/\mathcal{Q} \)’s are the only nonzero elements for the \(a \), vibrational modes and either \(\Delta \mathcal{P}/\mathcal{Q} \)’s or \(\Delta \mathcal{P}/\mathcal{Q} \)’s for the \(E \) modes in the coordinates defined in Figure 1. For dichloromethane which belongs to the C₂ᵥ point group, \(\Delta \mathcal{P}/\mathcal{Q} \)’s are the only nonzero elements for the \(a \) vibrational modes, \(\Delta \mathcal{P}/\mathcal{Q} \)’s for the \(B₁ \) modes, and \(\Delta \mathcal{P}/\mathcal{Q} \)’s for the \(B₂ \) modes in the coordinates of Figure 1. The present theoretical calculations led to the \((+-+) \) choice of signs for the \(A₁ \) modes (\(\mathcal{P}/\mathcal{Q} \) being positive and the others negative) and the \((-++) \) sets for the \(E \) modes (\(\mathcal{P}/\mathcal{Q} \) being positive and the others negative) in both of CH₂Cl and CD₂Cl. For CHCl₃ and CDCl₃, the \((+-+) \) and \((-++) \) sign sets were obtained for the \(A₁ \) and \(E \) modes, respectively. For CH₂Cl₂, the \((+-+) \), \((+++) \) and \((-++) \) sign sets were obtained for the \(A₁ \), \(B₁ \), and \(B₂ \) modes, respectively, and for CD₂Cl₂ the \((+-+) \), \((-++) \), and \((+++) \) sign sets were obtained for the \(A₁ \), \(B₁ \), and \(B₂ \) modes, respectively. The \(Q \)'s referred herein correspond to the \(\nuš \)'s in Table 5. That is, for CH₂Cl(Cl₂Cl) and CHCl₃(Cl₃Cl) the \(Q₁ \), \(Q₂ \), and \(Q₃ \) normal coordinates belonging to the \(A₁ \) species correspond, respectively, to the \(\nu₁ \), \(\nu₂ \), and \(\nu₃ \) modes, and the \(Q₄ \), \(Q₅ \), and \(Q₆ \) coordinates belonging to the \(E \) species to the \(\nu₄ \), \(\nu₅ \), and \(\nu₆ \) modes, respectively, in Table 5. Similarly, for CH₂Cl₂(Cl₃Cl₂) the \(Q₁ \), \(Q₂ \), \(Q₃ \), and \(Q₄ \) coordi-
Kinetic Energy Release in the Fragmentation of tert-Butylbenzene Molecular Ions. A Mass-analyzed Ion Kinetic Energy Spectrometric(MIKES) Study

Joong Chul Choe, Byung Joo Kim, and Myung Soo Kim

Department of Chemistry, College of Natural Sciences,
Seoul National University, Seoul 151-742. Received December 6, 1988

Kinetic energy release in the fragmentation of tert-butylbenzene molecular ion was investigated using mass-analyzed ion kinetic energy spectrometry. Method to estimate kinetic energy release distribution (KED) from experimental peak shape has been explained. Experimental KERD was in good agreement with the calculated result using phase space theory. Effect of dynamical constraint was found to be important.

Introduction

Studies of the ion structure and the fragmentation mechanism are of primary concern for the fundamental understanding of mass spectrometry. Especially, the role of ion internal energy and its disposal in the fragmentation are subjects of profound interest in physical chemistry. From these perspectives, various mass spectrometric methods have been developed such as metastable ion mass spectrometry, collisional activation mass spectrometry, field ionization kinetics, photodissociation mass spectrometry, and photoelectron-photoion coincidence spectrometry. Also, some of these techniques find increasing use in analytical application.

Theoretically, ion fragmentation kinetics is usually described by the quasi-equilibrium theory(QET) proposed by Rosenstock et al. Since quasi-equilibrium assumption in QET leads to the same mathematical formalism as the Rice-Ramsperger-Kassel-Marcus (RRKM) theory for unimolecular reaction, this is sometimes called the RRKM-QET theory. A unimolecular reaction can also be investigated from the corresponding reverse reaction relying on the principle of microscopic reversibility. The phase space theory (PST) developed by Light et al. and by Klots from this perspective has proved useful for the understanding of ion fragmentation process. Especially, PST has provided a good description of the disposal of the internal energy of a fragmenting ion to the kinetic energy of the products.

In the present work, a metastable ion decomposition has been investigated for the molecular ion of tert-butylbenzene.