Numerical Calculation of the Relaxation Spectrum from the Correlation Function$^\dag$

  • Published : 1987.10.20


It has been shown that the distribution of relaxation times, H(ln $\tau$), in semi-logarithmic time scale can easily be calculated numerically from the derivative of the relaxation function in semilogarithmic scale. In that, ln$\tau$, the abscissa, is divided into N different segments of equal size, then H is considered to be a linear function of ln $\tau$within each segment. The technique has been applied to a Williams-Watts function as well as to the relaxation function obtained by photon correlation spectroscopy from atactic polystyrene glass. It has been demonstrated that the relaxation functions can be precisely reproduced from the calculated distribution functions.



  1. Laser Light scattering B. Chu
  2. Dynamic light scattering B. Berne;R. Pecora
  3. Adv. Polym. Sci. v.48 G. D. Patterson
  4. J. Chem. Phys. v.70 G. D. Patterson;C.P. Lindsey;J.R. Stevens
  5. Macromolecules v.12 H. Lee;A. M. Jamieson;R. Simha
  6. Macromolecules v.14 G. Fytas;Th. Dorfmuller;Y.-H. Lin;B. Chu
  7. J. Appl. Phys. v.16 T. Alfrey;P. Doty
  8. Viscoelastic properties of polymers(3rd ed.) J. D. Ferry
  9. J. Appl. Phys. v.21 J. D. Ferry;W. M. Sawyer;G. V. Browning;A. H. Groth, Jr.
  10. J. Appl. Phys. v.22 J. D. Ferry;E. R. Fitzerald;M. F. Johnson;L. D. Grandine, Jr.
  11. Appl. Sci. Res. v.A4 F. Schwarzl;A. J. Staverman
  12. Industr. Engng. Chem. v.44 R. C. Andrews
  13. J. Chem. Phys. v.19 D. W. Davidson;R. H. Cole
  14. J. Appl. Phys. v.29 H. Fujita
  15. J. Colloid Sci. v.14 K. Ninomiya;J. D. Ferry
  16. J. Chem. Phys. v.86 K. L. Nagi;C. H. Wang;G. Fytas;D. L. Plazek;D. J. Plazek
  17. Proc. Phys. Soc. v.LSVIII no.2-B F. C. Roesler;W. A. Twyman
  18. Trans. Faraday Soc. v.66 G. Williams;D. C. Watts
  19. Macromolecules v.12 B. Chu;T. Nose