Optimization of Booster Disinfection Scheduling in Water Distribution Systems using Artificial Neural Networks

인공신경망을 이용한 상수관망 염소 재투입 스케줄링 최적화

  • 정기문 (경희대학교 공과대학 사회기반시스템공학과) ;
  • 강두선 (경희대학교 공과대학 사회기반시스템공학과)
  • Published : 2018.05.23

Abstract

상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단