Generative Adversarial Network based CNN model for artifact reduction on HEVC-encoded video

HEVC 비디오 영상 압축 왜곡 제거를 위한 Generative Adversarial Network 적용 기법

  • Jeon, Jin (Korea Advanced Institute of Science and Technology) ;
  • Kim, Munchurl (Korea Advanced Institute of Science and Technology)
  • Published : 2017.06.21

Abstract

본 논문에서는 비디오 영상 압축 왜곡 제거를 위해 Generative Adversarial Network (GAN)을 적용한 컨벌루션 뉴럴 네트워크 (CNN) 모델을 제안한다. GAN 모델의 생성 모델 (Generator)은 노이즈가 아닌 High Efficiency Video Coding (HEVC)로 압축된 영상을 입력 받은 뒤, 압축 왜곡이 제거된 영상을 출력하며, 분류 모델 (Discriminator)은 원본 영상과 압축된 영상을 입력 받은 뒤, 원본 영상과 압축 왜곡이 포함된 압축된 영상을 분류한다. 분류 모델은 5 개 층을 쌓은 컨벌루션 뉴럴 네트워크 구조를 사용하였고, 생성 모델은 5 개 층을 쌓은 SRCNN 구조와 VDSR 구조를 기반으로 한 두 개의 모델을 이용한 실험을 통해 얻은 결과를 비교하였다. 비디오 영상 압축 왜곡 제거 실험을 위해 원본 비디오 영상을 HEVC 을 이용하여 2Mbps, 4Mbps 로 압축된 영상을 사용하였으며, 압축된 영상 대비 왜곡이 제거된 영상을 얻을 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단