Depth Map Upsampling via Markov Random Field without Color Boundary Noise Effect

컬러경계 잡음 현상을 제거한 Markov 랜덤 필드 기반 깊이맵 업샘플링

  • Mun, Ji-Hun (Gwangji Institute of Science and Technology (GIST)) ;
  • Ho, Yo-Sung (Gwangji Institute of Science and Technology (GIST))
  • Published : 2014.06.30

Abstract

3차원 영상 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 깊이를 측정하는 TOF 카메라에 의해 획득된 깊이 영상은 컬러 영상에 비해 매우 작은 해상도의 영상을 갖게 되는 문제가 있다. 따라서 색상 영상과 함께 3차원 영상 제작에 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 방법이 필요하다. 특히 컬러 영상에서 사물 간의 경계에 해당하는 부분에서 색상 차이를 인지하지 못하여 깊이 맵을 부적절하게 처리하게 되는 경우가 발생한다. 본 논문에서는 색상 영상에서 경계부분에 해당하는 영역을 이용하여 저해상도 깊이 영상을 업샘플링 하는 방법을 제안한다. 깊이 영상을 업샘플링 할 때 중요하게 다루어야 할 경계 부분을, 고해상도 색상 영상과 저해상도 깊이 영상을 이용하여 찾아낸다. 색상 경계 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 MRF를 이용하여 모델링하고, 신뢰 확산(belief propagation)방법을 이용하여 에너지 함수 최적화를 수행한다. 제안한 방법은 기존의 다른 에너지 함수나 필터 기반 업샘플링 방법보다 우수한 성능을 나타내었다.

Keywords

Acknowledgement

Supported by : 한국연구재단