Comparison to Cone Models for Halo Coronal Mass Ejections

  • Published : 2011.04.15


Halo coronal mass ejections (HCMEs) are mainly responsible for the most severe geomagnetic storms. To minimize the projection effect of the HCMEs observed by coronagraphs, several cone models have been suggested. These models allow us to determine the geometrical and kinematic parameters of HCMEs : radial speed, source location, angular width, and the angle between the central axis of the cone and the plane of the sky. In this study, we compare these parameters form two representative cone models (the ice-cream cone model and the asymmetric cone model) using well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (rms error) between observed projection speeds and calculated projection speeds for both cone models. It is found that the average rms speed error (89 km/s) of the asymmetric cone model is a little smaller than that (107 km/s) of the ice-cream cone models, implying that the radial speeds from both models are reasonably estimated. We also find that the radial speeds obtained from two models are similar to each other with the correlation coefficient of about 0.8.