Mutual Information Technique for Selecting Input Variables of RDAPS

RDAPS 입력자료 선정을 위한 Mutual Information기법 적용

  • 한광희 (연세대학교 사회환경시스템공학부 토목환경공학과) ;
  • 류용준 (연세대학교 사회환경시스템공학부 토목환경공학과) ;
  • 김태순 (연세대학교 사회환경시스템공학부 토목환경공학과) ;
  • 허준행 (연세대학교 사회환경시스템공학부 토목환경공학과)
  • Published : 2009.05.21

Abstract

인공신경망(artificial neural network) 기법은 인간의 두뇌 신경세포의 활동을 모형화한 것으로 오랜 시간동안 발전해 왔으며 여러 분야에서 활용되고 있고 수문분야에서도 인공신경망을 이용한 연구가 활발히 진행되어 왔다. RDAPS와 같은 단기수치예보 자료는 강우의 유무 판단과 같은 정성적인 분석에서 비교적 정확도가 높지만 정확한 강우량의 추정과 같은 정량적인 부분에서는 정확도가 매우 낮으므로 인공신경망 기법과 같은 후처리 기법을 통해서 정확도를 높이게 된다. 인공신경망 기법을 수행할 때, 가장 중요한 것은 입력변수선택(input variable selection)으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 주게 된다. 본 연구에서는 mutual information을 입력 변수 선택 기법으로 채택하여, 인공신경망의 입력변수 선정의 정확도를 알아보고자 한다. Mutual information은 주어진 자료의 엔트로피값을 이용하여 변수들 간의 독립과 종속의 관계를 나타내는 기법으로서, MI값은 '0'에서 '1'의 값을 가지며 '0'에 가까울수록 변수들 간의 관계가 독립적이고 '1'에 가까울수록 종속적인 관계를 나타낸다. 인공신경망의 입력변수선정에 대한 mutual information의 정확도를 알아보기 위해, 기존 입력변수선택 기법과 mutual information을 이용했을 경우의 인공신경망의 처리능력, 정확도를 비교 검토하였다.