Magneto-transport Studies on LCMO/STO Nanocomposites

L. Joshi*, S. Keshri, and S. K. Rout
Department of Applied Physics, Birla Institute of Technology Mesra, Ranchi-835215, India
*Corresponding author: L. Joshi, e-mail: leenaljoshi@gmail.com

Nanocomposites LCMO(La0.67Ca0.33MnO3)/STO have been synthesized by the solid state route having average grain size of LCMO in microns and that of STO in nano range. Structural and electrical transport studies have been done to complete immiscibility between the two phases. Electrical transport studies show that the composite samples of this series show two possible Colossal Magneto-resistance (CMR) effects – intrinsic and extrinsic. The intrinsic CMR effect observed around this transition temperature is caused by the ‘double exchange’ mechanism proposed by Zener [1] whereas the grain boundary MR or extrinsic CMR effect is reported to be due to natural or artificial grain boundaries [2,3]. Due to grain boundary insertions there is improvement in low field MR which make it more applicable by decreasing the field requirement.

REFERENCES

Magneto-transport Properties of LSMO Films with Various Textures

Young-Min Kang, Sung-Yun Lee, Da-Cil You, Geo-Myoung Shin, Kyung-Pil Ko, A.N. Ulyanov, and Sang-Im Yoo*
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
*Corresponding author: Sang-Im Yoo, e-mail: siyoo@snu.ac.kr

We report on microstructure, magnetic and magneto-transport properties of La0.7Sr0.3MnO3 thin films, having various textures. Epitaxial LSMO films on MgO(001) single crystal substrate, 2 dimensionally (2D)-oriented films on IBAD (ion beam assisted deposition)-processed MgO layers on metal tapes [1], and 1D (or fiber)-textured LSMO films on MgO-buffered SiO2/Si substrate were prepared, respectively, by pulsed laser deposition (PLD) in situ growing at 800°C and 400 mTorr oxygen. Randomly oriented LSMO films were also prepared by solid phase crystallization of amorphous films deposited by DC magnetron sputter at room temperature (RT). The solid phase crystallization (SPC) process was conducted on the amorphous films through post annealing at 900°C for 2 h in oxygen atmosphere. The phases and textures of the films were analyzed by XRD 0-2θ and Φ scan and the microstructures of the films were revealed by SEM.

The samples in formation and properties are presented in Table 1. The Curie temperatures of all the films are higher than RT. The resistivity of the films most significantly increases with losing their texture. The 1-D and 2-D oriented films show relatively large LFMR, while the epitaxial films show very small LFMR at 100 and 300K. The highest LFMRs of 16% at 100K and 1% at 300K and 500 Oe are obtained at randomly oriented LSMO films, which is also superior as compared with reported data. The results are explaining that the magneto-transport of LSMO films is dominantly controlled by grain boundary properties, such as the angle between the grains and grain connectivity.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Crystallographic orientation</th>
<th>Growth method</th>
<th>t (mm)</th>
<th>Tc (K)</th>
<th>To (K)</th>
<th>ρ(100K)</th>
<th>LFMR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>epitaxial</td>
<td>PLD, in situ</td>
<td>100</td>
<td>358</td>
<td>380</td>
<td>4.2 Å × 10-4</td>
<td>0.2 / -0.3</td>
</tr>
<tr>
<td>IBAD MgO</td>
<td>2D texturized</td>
<td>PLD, in situ</td>
<td>100</td>
<td>330</td>
<td>275</td>
<td>2 Å × 10-4</td>
<td>6.2 / 0.23</td>
</tr>
<tr>
<td>MgO/SiO2/Si</td>
<td>c-axis oriented</td>
<td>PLD, in situ</td>
<td>100</td>
<td>356</td>
<td>198</td>
<td>0.17</td>
<td>8.8 / 0.35</td>
</tr>
<tr>
<td>SiO2/Si</td>
<td>randomly oriented</td>
<td>PLD, in situ</td>
<td>100</td>
<td>370</td>
<td>280</td>
<td>0.49</td>
<td>160 / 1.0</td>
</tr>
</tbody>
</table>

REFERENCES