As an Magnet i cs Conf e r e nc e 2008 & KMS 2008 W i nt e r Conf er e nc e , Dec e mbe r 10-13, 2008, Busan, Kor e a

CD04

Optimization of Spin-valve Structure NiFe/Cu/ NiFe/IrMn for Planar Hall Effect Based Biochips

Bui Dinh Tin¹, Le Viet Cuong¹, Tran Quang Hung¹, Le Van Phong¹, Do Thi Huong Giang¹, Tran Man Danh¹, Nguyen Huu Duc¹ ² ³, and Cheol Gi Kim²
¹Department of Nano Magnetic Materials and Devices, Faculty of Physics Engineering;
²Laboratory for Nano-Nano Technology, College of Technology, Vietnam National University, Hanoi
³Building, 144 Xuan Thuy Road, Cau giay, Hanoi, Vietnam.

ABSTRACT

Magnetic label detection has been performed by using different spintronic platforms, among them the Planar Hall Effect (PHE) has recently been receiving great attention thanks to its nano-Tesla sensitivity and high signal-to-noise ratio. PHE is based on the anisotropy magnetoresistance of ferromagnetic materials. The transverse voltage on a planar Hall cross depends on the orientation of the magnetization of the material with respect to the longitudinal current running through the material. Thus, the large PHE is usually observed in exchange bias based structures because they can ensure a sufficient uniaxial anisotropy with well defined single domain states to introduce a unidirectional anisotropy. The present paper deals with the PHE of Ta(5 nm)/NiFe(x)/Cu(2 nm)/NiFe(t)/IrMn(5 nm)/Ta(5 nm) spin-valve structures. In this structure, the free (x) and pinned (t) layer thicknesses are parameters which have to be optimized. Experimental investigations are performed for 50×50 μm² junctions with x = 4, 8, 10, 15, 20 nm and t = 2, 3, 6, 8, 9, 12 nm. The results show that the thicker free ferromagnetic layers enhances the PHE signal, whereas the thinner pinned ferromagnetic layers will lower the signal. Optimization is obtained with x = 20 nm and t = 2 nm, corresponding to a PHE sensitivity as high as 7.6 mΩ/Oe. It can be well applied for single Dynabeads® M-280 Streptavidin detection.

CD05

Voltage-induced Resistance Change in Spin-valve/PZT Systems

D.T. Huong Giang¹, V.N. Thuc¹ ², and N.H. Duc¹ ² ³
¹Laboratory for Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology
²Laboratory for Micro-Nano Technology, College of Technology, Vietnam National University, Hanoi
³Building, 144 Xuan Thuy Road, Cau giay, Hanoi, Vietnam.

Spintronics is mainly related to the magnetization switching phenomena, among which field-induced magnetization switching, thermally assisted switching and spin transfer switching are well described. The present study proposes another magnetization switching type, namely as voltage-induced spin reorientation. This switching mechanism is realized the spin-valve-based Ta(5 nm)/NiFe(20 nm)/Cu(2 nm)/Fe₆₀Co₄₀(10 nm)/IrMn(15 nm)/Ta(5 nm)/PZT structure, where the magnetization in magnetostrictive CoFe layer can be rotated under strain. This nanostructure can be considered as a multiferroic material. Thanks to the magnetoelastic coupling between ferromagnetic (spin-valve) and ferroelectric (PZT) layers, and the inverse magnetostrictive effect (Villari effect), the magnetization can be tuned by applying an external electrical field (or an external voltage). This phenomenon is evidenced by the magnetization and magnetoresistance change obtained under an voltage (V_pzt) applied in the PZT layer (see Figure 1). This novel multiferroic architecture and magnetization switching mechanism is rather promising for advanced spintronics.