Self-assembly of Superparamagnetic Particles for High-speed Magneto-optical Modulators and Biosensors

S. Y. Park1,2, H. Handa1,2, and A. Sandhu1,2,*
1Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, Tokyo, Japan
2Integrated Research Institute, Tokyo Institute of Technology, Tokyo, Japan
3Tokyo Tech Global COE Program on Evolving Education and Research Center For Spatio-Temporal Biological Network
*Corresponding author: sandhu.a@mech.titech.ac.jp

A promising approach for the fabrication of optical modulators and detection of magnetically labeled biomolecules [1] is based on monitoring the optical transmittance of magnetically induced self-assembly of functionalized superparamagnetic beads (SPBs) in aqueous solutions. However, reports so far show that the response time of optical modulation to be slow, and the optical set-up complicated. Here, we demonstrated a simple, high-speed magneto-optical modulator utilizing rotatable SPB chains. Fig. 1 shows the variation of the intensity of transmitted light (wavelength of 487 nm) with the angle (θ) between the directions of the applied magnetic field and incident light. The optical transmittance was found to depend on the orientation of the SPB chains. Therefore, the chains act as an optical transmittance valves. The switching speed of transmittance was in the millisecond range. Based on these results, we will propose a new simplified, high-speed method for optical modulation and biomolecular sensing.

This work was partly supported by MEXT.

Fig. 1. Variation of the optical transmittance with magnetic field strength and angle of incident light. Symbols in inset: A: SPB-chain; B: microscope; C: 487 nm wavelength light; D: magnetic field; θ: angle between incident light and magnetic field.

REFERENCES

Growth Controlled Magnetic Nanoparticles in the Aqueous Microdroplets and their Magnetic Properties

Bong-sik Jeon and Jong-Duk Kim*
Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 305-701, Republic of Korea
*Corresponding author: Jong-Duk Kim, email: jdkim@kaist.ac.kr

The nanoparticle materials often exhibit very interesting electrical, optical, magnetic and chemical properties, which cannot be achieved by their bulk counterparts. In this paper, we report the synthesis and characterization of the FeO4 nanospheres by a chemical coprecipitation technique through the pipette drop (pipette diameter: 2000 mm) and the piezoelectric nozzle method (nozzle size: 50 mm). And their physical and magnetic property were characterized by TEM, XRD and SQUID. A molar ratio of Fe(II)/Fe(III) = 0.5 was dissolved in distilled water with sonicator. The result solution was poured with piezoelectric nozzle method into alkali solution and black precipitates were formed immediately. X-ray diffraction was measured for the estimation of average particle size of synthesized magnetite and all the results were compared with TEM image. For the estimation as MRI contrast agent, the magnetic property of synthesized magnetic was finally measured by Vibrating Sample Magnetometer.

FeCl2(1mol) + FeCl3 (2mol) -> FeO4

Drop size of the iron source was affect not only the size and shape of the nanoparticles but also the magnetic properties. The effect of drop size of the iron solution were measured by various analytical methods. XRD peak shows that the particle size control was possible only when the micromixer was used. And the peak position was precisely matched with the one of bulk magnetite nor the hematite nor any other iron oxides. Magnetization of magnetite were definitely controlled through the micromixer device and this prove that the physical property can be controlled in chemical coprecipitation.

REFERENCES