Advanced Integrator System for KSTAR Magnetic Fusion Device

E. M. Ka1*, S. G. Lee1, J. G. Bak1, and D. Son2
1National Fusion Research Institute, 133 Gwahangno Yuseong-Gu Daejeon 305-333, KOREA
2Department of Physics, Hannam University, 133 Ojung- dong Daejeon-Gu Daejeon 306-791, KOREA
*Corresponding author: e-mail: emka@nfri.re.kr

The drift self-compensating type analog integrator and impedance buffering pre-amplifier (integrator system) have been installed and characteristics tests of them have been successfully performed for initial magnetic diagnostics (MD) of the first plasma operation in the Korea Superconducting Tokamak Advanced Research (KSTAR) device [1].

The MD has been based on inductive coil sensor in the most magnetic confinement device and tokamak [2, 3]. The 77 MD sensors have been installed and in-situ calibrated for the first plasma operation in the KSTAR device which includes Rogowski coil, five flux loops, one pair of diamagnetic loops, three vessel current monitors and sixty four magnetic field probes.

Figure 1 shows schematic diagram of installed total of measurement system for plasma operation. The measured data through the MD sensor saved in main server after drift of the integrator... has about 2 % non-linear. Hence, integrator system should be improved for real time plasma control in next campaign.

The results of drift measurement from the first plasma generation will be presented and discussed.

This work was supported by the Korea Ministry of Science and technology under the KSTAR project contracts.

REFERENCES

Sensitivity and Noise of Coaxial Transmission Line Type Magnetic Field Sensor Constructed with Co Base Amorphous Wire

Young-Hak Kim1 and Kwang-Ho Shin2*
1Pukyong University, Pusan, Korea
2Kyungsung University, Pusan, Korea
*Corresponding author: Kwang-Ho Shin, e-mail: khshin@star.ks.ac.kr

Co-based amorphous wire with 125 µm in the diameter and 40 mm long was used as an inner conductor of the coaxial transmission line type magnetic field sensor. Complex input impedance of the transmission line was measured up to 3 GHz with longitudinal magnetic field. The first frequency corresponding to 1/4 wavelength of this transmission line length was dependent to applied magnetic field around 250 MHz. The sensitivity, △Z/(Z0 △H) was over 200 in several tens MHz. Analysis of noise... the sensitivity quantitatively from the measured input impedance, and compared with the numerically computed ones.

REFERENCES