Removing non-informative features weakening of class separability

클래스 구분력이 없는 특징 소거법

  • Published : 2007.11.02

Abstract

본 논문에서는 불균형 및 Under-sampling된 바이오 데이터에 대하여 클래스 구분력이 없는 특징의 소거를 통해 이후 이어질 FLDA 둥 다양한 방법론올 적용할 수 있는 방법을 제안하고자 한다. 제안하는 알고리즘은 평균과 분산을 통해 클래스의 형태를 결정하는 기존 방법론의 문제점을 회피할 수 있는 방법을 제공하며, 클래스 구분력에 중점을 두어 특정을 선별하였을 경우 선별된 특정들의 상관 계수가 높은 문제를 극복할 수 있도록 한다. 이에 따라 알고리즘이 선택한 특정집합은 서로의 특징에 대해 상관계수가 낮으며, 클래스의 구분력이 높은 특정을 갖게 된다.