<table>
<thead>
<tr>
<th>제 목</th>
<th>유전자 공학 기법을 이용한 새로운 당뇨병 치료제 개발 연구</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구자</td>
<td>남 두 현</td>
</tr>
<tr>
<td>소 속</td>
<td>영남대학교 약학대학 제약학과</td>
</tr>
<tr>
<td>내용</td>
<td>B30 위치에 homoserine이 치환된 사람 insulin 유전자 (B30-homoserine) insulin을 생산하기 위해, insulin의 B 사슬 유전자에 A 사슬 유전자를 직접 연결한 insulin 유전자를 설계하였다. 이 유전자는 10개의 oligonucleotide로 나누어 합성하여 T4 DNA ligase로 결합시킨 후, pUC19 plasmid의 poly linker 영역에 삽입하였다. 이 유전자의 발현을 높이기 위해 이 유전자는 다시 tac promoter의 지배를 받는 lacZ 유전자의 Cia I 또는 Hpa I 제한부위에 도입하여 옵합시켰다. 이렇게 구축된 유전자 pTBA나 pKBA를 Escherichia coli JM103 균주에 형질도입시킨 후, 이를 4시간 배양한 후 0.05mM 이상의 isopropyl-β-D-thiogalactopyranoside (IPTG)를 배지에 공급해 주고 2시간 더 배양하였을 때 유전자 발현이 잘 유효되어짐을 알 수 있었다. 이 때 생산된 insulin 전구체들은 세포내 불용성인 inclusion body로 축적되어지는 것을 관찰하였으며, 그 생산량은 세포내 전체 단백질량의 30%에 달하였다.</td>
</tr>
</tbody>
</table>