LIGAND BINDING CHRATERISTICS OF κ_2- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF $[^{3}\text{H}]$HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

Kee-Won Kim and Kyu-Park Cho
Department of Pharmacology, Chonbuk National University Medical School, Chonju 560-182

It has been shown that there are several subtypes of κ opioid receptor. We have evaluated the properties of non-μ, non-δ binding of $[^{3}\text{H}]$DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to μ and δ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. ($^{\sim}$Ethylketocyclazocine(EKC) inhibited $[^{3}\text{H}]$DIP binding with Ki of 70 nM. However, aryacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K^+(30 mM)-induced histamine release in rat frontal cortex slices labeled with $[^{3}\text{H}]$histidine. The $[^{3}\text{H}]$histamine release from cortex slices was inhibited by EKC, a κ_1-and κ_2-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$_{50}$ of EKC was 107 ± 6 nM. However, the δ receptor selective agonists, DPDPE and deltorphine II, μ receptor agonists, DAMGO and TAPS, κ_1-agonists, U69593 and U50488H, and ϵ-agonist, β-endorphin, did not inhibit histamine release even in micromolar dose, indicating that μ, δ or κ_1 receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a μ preferential antagonist, norbinaltorphimine(300 nM), a κ_1 preferential antagonist and bremazocine(1 nM), a κ_1-agonist and κ_2-antagonist. These results suggest that κ_2 opioid receptor regulates histamine release in the frontal cortex of the rat. (This work is supported in part by Basic Medical Science Fund, Korea Research Foundation to KWK, 1993.)