Development of a neural network with fuzzy preprocessor

퍼지 전처리기를 가진 신경회로망 모델의 개발

  • 조성원 (홍익대학교 공과대학 전기공학과) ;
  • 최경삼 (홍익대학교 공과대학 전기공학과) ;
  • 황인호 (홍익대학교 공과대학 전기공학과)
  • Published : 1993.10.01


In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classification accuracy but also for being able to classify objects whose attribute values do not have clear boundaries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. The transformed input is processed in the postprocessing module. The experimental results indicate the superiority of the backpropagation network with fuzzy preprocessor in comparison to the conventional backpropagation network.