Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Comparative Molecular Similarity Indices Analysis (CoMSIA) Methodology

비교 분자 유사성 지수분석(CoMSIA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chlore-4-fluorobenzene 유도체들의 Protox 저해 활성에 관한 이해

  • Song, Jong-Hwan (Cytosine Laboratory, Korea Research Institute of Chemical Technology) ;
  • Park, Kyung-Yong (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 송종환 (한국화학연구원 세포화학연구실) ;
  • 박경용 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2004.12.31

Abstract

3D QSAR studies for protox inhibition activities against root and shoot of the rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were conducted based on the results (Sung, N. D. et al.'s, (2004) J. Korean Soc. Appl. Biol. Chem. 47(3), 351-356) using comparative molecular similarity indices analysis (CoMSIA) methodology. Four CoMSIA models, without hydrogen bond donor field for the protox inhibition activities against root and shoot of the two plants, were derived from the combination of several fields using steric field, hydrophobic field, hydrogen bond acceptor field, LUMO molecular orbital field, dipole moment (DM) and molar refractivity (MR) as additional descriptors. The predictabilities and fitness of CoMSIA models for protox inhibition activities against barnyard-grass were higher than that of rice plant. The statistical results of these models showed the best predictability of the protox inhibition activities against barnyard-grass based on the cross-validated value $r^2\;_{cv}\;(q^2=0.635{\sim}0.924)$, non cross-validated, conventional coefficient $r^2\;_{ncv.}$ value $(r^2=0.928{\sim}0.977)$ and PRESS value $(0.255{\sim}0.273)$. The protox inhibition activities exhibited a strong correlation with the steric $(5.4{\sim}15.7%)$ and hydrophobic $(68.0{\sim}84.3%)$ factors of the molecules. Particularly, the CoMSIA models indicated that the groups of increasing steric bulk at ortho-position on the C-phenyl ring will enhance the protox inhibition activities against barnyard-grass and subsequently increase the selectivity.

새로운 5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzenes 유도체들의 구조 변화에 의한 벼(Orysa sativa L.)와 논피 (Echinochloa crus-galli) 뿌리와 줄기 부위의 protox 저해활성에 대한 3차원적 구조-활성관계(3D-QSAR)에 근거하여(성낙도, 등 (2004) 한국응용생명화학회지 47(3), 351-356) 비교분자 유사성 지수분석(CoMSIA) 방법으로 연구하였다. 두 초종의 부위별 protox 저해활성에 관한 CoMSIA 모델들은 수소결합 주게장이 제외된 입체장, 정전기장, 소수성장, 수소결합 받게장 등으로 조합된 CoMSIA장과 부가적 설명 인자로서 LUMO 분자 궤도장, 몰라 굴절을(MR) 및 쌍극자 능율(DM) 등이 추가된 조건에서 유도되었다. 방제 대상인 논피에 대한 모델이 벼에 대한 모델보다 양호하였으며 논피에 대한 모델은 cross-validated $r^2\;_{cv.}$$(q^2=0.871{\sim}0.913)$과 non cross-validated $r^2\;_{ncv.}$$(0.936{\sim}0.920)$ 그리고 PRESS 값$(0.255{\sim}0.273)$에 근거하여 매우 좋은 예측성을 나타내었다. 그리고 protox 저해 활성은 분자의 입체장$(5.4{\sim}15.7%)$ 및 소수성장$(68.0{\sim}84.3%)$과 높은 상관성을 보였다. 이같은 CoMSIA 분석결과, 논피에 대한 선택적인 protox 저해활성은 C-phenyl 고리상 ortho-위치가 steric bulky 할수록 클 것으로 예상되었다.

Keywords

References

  1. Boger, P and Wakabayashi, K. (1999) Peroxidizing Herbicides, Springer-Verlag Berline Heidelberg. Germany
  2. Fujita, T. (2002) In Agrochemical Discovery, Insect, Weed, and Fungal control: Similarities in bioanalogous structural transformation patterns, Ch. 15, Baker, D. R. and Umetsu, N. K. (eds.), ACS Symposium Series No. 774, American Chemical Society, Washington, DC
  3. Pallett, K. E. (1997) Herbicide target sites, recent trends and new challenges, Proceeding of Brighton Crop Protection Conference-Weeds, pp. 575-578
  4. Uraguchi, R., Sato, Y., Nakayama, A., Sukekawa, M., Iwataki, I., Boger, P. and Wakabayashi, K. (1997) Molecular shape similarity of cyclic imides and protoporphyrinogen IX. J. Pestic. Sci. 22, 314-320
  5. Theodoridis, G., Bahr, J. T., Hotzman, F. W., Sehgel, S. and Suarez, D. P. (2000) New geration of protox-inhibiting herbicides, Crop Prot. 19, 533-535 https://doi.org/10.1016/S0261-2194(00)00069-7
  6. Sung, N. D., Ock, H. S., Chung, H. J,. Song, J. H. and Lee, Y. G. (2003) Comparatives molecular field analyses (CoMFA) on the growth inhibition activity of N-phenyl-3,4,5,6-tetrahydrophthalimide and N-phenyl-3,4-dimethylmaleimide derivatives. Kor. J. Pest. Sci. 7(2), 75-82
  7. Sung, N. D., Ock, H. S., Chung, H. J. and Song, J. H. (2003) Quantitative structu- re-activity relationships and molecular shape similarity of the herbicidal N-substituted phenyl-3,4-dimethylmaleimide derivatives, Kor. J. Pest. Sci. 7(2), 100-107
  8. Sung, N. D., Song, J. H., Yang, S. Y. and Park, K. Y. (2004) Understanding the herbicidal activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives as protox inhibitors using comparatives molecular field analyses (CoMFA) methodology, Kor. J. Pest. Sci. 8(3), 151-161
  9. Sung, N. D., Song, J. H. and Park, K. Y. (2004) Understanding the herbicidal activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methioxy-2-chloro-4-fluorobenzene derivatives as protox inhibitors using holographic quantitatives structure-activity relationship (HQSAR) methodology, J. Kor. Soc. Appl. Biol. Chem. 47(3), 351- 356
  10. Kubinyi, H. (1993) 3D QSAR Drug Design, Theory, Methos and Applications, ESCOM. Leiden
  11. Klebe, G. and Abraham, U. (1999) Comparative molecular similarity indices analyisis (CoMSIA) to study hydrogenbonding properties and to score combinatorial libraries. J. Comput. Aid. Mol. Des. 13, 1-10 https://doi.org/10.1023/A:1008047919606
  12. Ryu, E. K., Jeon, D. J., Song, J. H. and Kim, H. R. (2001) Herbicidal 2-(5-isoxa-zolmylmethyloxyphenyl)-4,5,6,7-tetrahydro-2H-indazo1e derivatives. Korean Pat. 0289470
  13. Kerr, R. et al., (1994) Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys. J. 67, 1501-1515 https://doi.org/10.1016/S0006-3495(94)80624-1
  14. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design: The conformational parameter in drug design; active analog approach. Olsen, E. C. and Christoffersen, R. E. (eds.), Ammerican Chemical Society, Washington, D.C., pp. 205-226
  15. Stewart, J. J. (1990) MOPAC: A semiempirical molecular orbital program. J. Comp.-Aided Mol. Design. 4, 1-105 https://doi.org/10.1007/BF00128336
  16. QCPE; Quantum Chemistry Program Exchange, Creative Arts Building 181, Indiana Univ., Bloomington, Indiana 47405, U.S.A
  17. Dewar, M. J. S., Zoebish, E. G., Healy, E. F. and Stewart, J. J. P. (1985) AMl: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902-3909 https://doi.org/10.1021/ja00299a024
  18. Lien, E. J., Guo, Z. R., Li, R. L. and Su, C. T. (1982) Use of dipole moment as parameter in drug receptor; Interaction and quantitative structure activity relationship studies. J. Pharm. 71, 641-655 https://doi.org/10.1002/jps.2600710611
  19. Bauer, N., Fajans, K. and Lewin, S. Z. (1960) Technique of Organic Chemistry, Vol. 1., Part ll, Wissberger, A. (ed.), Interscience, New York, p. 1139
  20. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO 63144-2913, U.S.A., /.http://www.tripos.com/Bookshelf/qsar
  21. Stahle, L. and Wold, S. (1988) Multivariate data analysis and experimental design in biomedical research. Progr. Med. Chem. 25, 292-334
  22. Cramer, R. D. lll., Bunce, J. D. and Patterson, D. E. (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional JAR studies. Quant. Struct. Act. Relat. 7, 18-25 https://doi.org/10.1002/qsar.19880070105
  23. Wold, S., Albano, C., Dunn, W. J., Edlund, U., Esbensen, K., Gelaae?, P., Hellberg, S., Johanasson, F., Lindberg, W. and Sjostrom, M. (1984) In Chemometrics: Mathematics and Statistics in Chemistry Multivariate Data Analysis in Chemistry, Kowalski, B. R. (ed.), Reidel, Dordrecht, Nethelands. pp. 12-94
  24. Waller, C. L. and Marshall, G. R. (1993) Three-dimensional quantitative structure- activity relationship of angiotesin converting enzyme and thermolysin inhibitors. 11. Acomparasion of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J. Med. Chem. 36, 2390-2403 https://doi.org/10.1021/jm00068a017
  25. Sung, N, D., (1989) Solvent dependence and component of linear free energy relationship on the chemical shift of methylene proton in 1-(Phenoxymethyl)benzotriazole derivatives. J. Kor. Chem. Soc. 33(5), 538-544
  26. Kim, K. H. (1993) hi 3D QSAR Drug Design, Theory, Methos and Applications: Comparison of classical and 3D-QSAR. Kubinyi, H. (ed.), ESCOM. Leiden, pp. 619-642