DOI QR코드

DOI QR Code

Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system

이동형 차량탑재 라이다 시스템을 활용한 경계층고도 산출 및 분석

  • Nam, Hyoung-Gu (High Impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Choi, Won (High Impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Kim, Yoo-Jun (High Impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Shim, Jae-Kwan (High Impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Choi, Byoung-Choel (High Impact Weather Research Center, Observation Research Division, National Institute of Meteorological Sciences, KMA) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 남형구 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 최원 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 김유준 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 심재관 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 최병철 (국립기상과학원 관측기반연구과 재해기상연구센터) ;
  • 김병곤 (강릉원주대학교 대기환경과학과)
  • Received : 2016.04.16
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

Planetary Boundary Layer Height (PBLH) is a major input parameter for weather forecasting and atmosphere diffusion models. In order to estimate the sub-grid scale variability of PBLH, we need to monitor PBLH data with high spatio-temporal resolution. Accordingly, we introduce a LIdar observation VEhicle (LIVE), and analyze PBLH derived from the lidar loaded in LIVE. PBLH estimated from LIVE shows high correlations with those estimated from both WRF model ($R^2=0.68$) and radiosonde ($R^2=0.72$). However, PBLH from lidar tend to be overestimated in comparison with those from both WRF and radiosonde because lidar appears to detect height of Residual Layer (RL) as PBLH which is overall below near the overlap height (< 300 m). PBLH from lidar with 10 min time resolution shows typical diurnal variation since it grows up after sunrise and reaches the maximum after 2 hours of sun culmination. The average growth rate of PBLH during the analysis period (2014/06/26 ~ 30) is 1.79 (-2.9 ~ 5.7) m $min^{-1}$. In addition, the lidar signal measured from moving LIVE shows that there is very low noise in comparison with that from the stationary observation. The PBLH from LIVE is 1065 m, similar to the value (1150 m) derived from the radiosonde launched at Sokcho. This study suggests that LIVE can observe continuous and reliable PBLH with high resolution in both stationary and mobile systems.

대기경계층고도 (Planetary Boundary Layer Height, PBLH)는 기상예측모델과 대기확산모델에 중요한 예측 인자이다. PBLH는 지역의 특성에 따라 시공간 빠르게 변화하기 때문에 이를 분석하기 위하여 시공간 고해상도로 관측된 자료가 필요하다. 본 연구에서 국립기상과학원 재해기상연구센터에서 운영중인 차량에 탑재된 라이다 시스템(Lidar observation Vehicle, LIVE)을 소개하고 이것으로 관측된 PBLH의 분석결과를 제시하였다. 분석기간 (2014년 6월 26일~30일) LIVE에서 산출된 PBLH는 WRF와 라디오존데에서 산출된 값과 비교하여 결정계수가 각각 0.68, 0.72로 높은 상관도를 나타내었다. 하지만, 라이다로 산출된 PBLH는 WRF, 라디오존데와 비교하여 값을 과대모의 하는 경향을 보였다. 이는 라이다가 중첩고도 이하 (< 300m)에서 나타나는 PBLH를 찾아내지 못하고 중첩고도 이상에서 나타나는 잔류층 (Residual Layer, RL)을 PBLH로 산출한 결과라 생각된다. 라이다를 활용하여 10분 시간 해상도로 산출된 PBLH는 일출 뒤 성장하다 태양의 남중이 최고가 되는 시점의 2시간 이후 서서히 감소하는 전형적인 일변화 경향을 보여주었다. 분석기간 평균 PBLH의 성장률은 1.79 (-2.9 ~ 5.7) m $min^{-1}$ 였다. 또한, 이동 중 관측된 라이다 신호를 고정관측 기반자료와 비교한 결과 잡음이 적은 것으로 나타났다. 이동 중 관측된 PBLH의 평균은 1065 m 였으며 인근 속초에서 비양된 라디오존데 (1150 m)와 유사한 값을 보였다. 본 연구에서 LIVE가 고해상도의 시공간 자료를 안정적으로 산출 할 수 있음을 제시하였다. 이 같은 LIVE의 장점은 에어로졸 및 대기구조에 대한 새로운 관측 패러다임 제시와 관측기술선진화에 기여도가 클 것으로 기대된다.

Keywords

References

  1. Baars, H., A. Ansmann, R. Engelmann, and D. Althausen, 2008. Continuous monitoring of the boundary-layer top with lidar, Atmospheric Chemistry and Physics, 8: 7281-7296. https://doi.org/10.5194/acp-8-7281-2008
  2. Banks, F.R., J. Tiana-Alsina, J.M. Baldasano, F. Rocadenbosch, A. Papayannis, S. Solomos, and C.G. Tzanis, 2016. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign, Atmospheric Research, 176-178: 185-201.
  3. Bi, L., Y. Ping, W.K. George, A.B. Bryan, X.H. Yong, M.W. David, R.S. Brock, and J.Q. Lu, 2009. Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and $1.064{\mu}m$, Journal of Geophysical Research, 114, D00H08, doi:10.1029/2009JD011759.
  4. Brooks, M.I., 2003. Finding Boundary Layer Top: Application of a wavelet covariace transform to lidar backscatter profiles, Journal of Atmospheric and Oceanic Technology, 20: 1092-1105. https://doi.org/10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO;2
  5. Cairo, F., G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, 1999. Comparison of various linear depolarization parameters measured by lidar, Applied Optics research, 38: 4425-4432. https://doi.org/10.1364/AO.38.004425
  6. Carswell, A.I., A. Fong, S.R. Pal, and I. Pribluda, 1995. Lidar-derived distribution of vertical location and extent, Bulletin of the American Meteorological Society, 34: 107-120.
  7. Chen, F. and J. Dudhia, 2001. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 Modeling system. Part I: Model implementation and sensitivity, Monthly Weather Review, 129: 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  8. Coen, M.C., C. Praz, A. Haefele, D. Ruffieux, and B. Calpini, 2014. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model, Atmospheric Chemistry and Physics, 14: 13205-13221. https://doi.org/10.5194/acp-14-13205-2014
  9. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefelder, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B, 61(1): 165-175. https://doi.org/10.1111/j.1600-0889.2008.00396.x
  10. Granados-Munoz, F. Navas-Guzman, J.A. Bravo-Aranda, J.L. Guerrero-Rascado, H. Lyamani, J. Ferandez-Galvez, and L. Alados-Arboledas, 2012. Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain, Journalof Geophysical Research, 117, D18208.
  11. Hariprasad, K.B.R.R., C.V. Srinivas, A.B. Singh, S.V.B. Rao, R. Baskaran, and B. Venkatraman, 2014. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site, Atmospheric. Research, 145-146(2014): 27-44. https://doi.org/10.1016/j.atmosres.2014.03.023
  12. Hong, S.Y., Y. Noh, and J. Dudihia, 2006. A new vertical diffusion package with an explicit treatment of entrainment processes, Monthly Weather Review, 134: 2318-2341. https://doi.org/10.1175/MWR3199.1
  13. Hu, X.M., J.W.N. Gammon, F. Zhang, 2010. Evaluation of three planetary boundary layer schemes in the WRF model, American Meteorological Society, 49: 1831-1844.
  14. Jung, S.P., T.Y. Kwon, and S.O. Han, 2014. Thermodynamic characteristics associated with localized torrential rainfall events in the middle west region of Korean Peninsula, Atmosphere, 24(4): 457-470 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.4.457
  15. Kim, B.G., S.A. Klein, J.R. Norris, 2005. Continental liquid water cloud variability and its parameterization using atmospheric radiation measurement data, Journal of Geophysical, Research, 110: 1-18, D15S08.
  16. Kim, D.R., and T.Y. Kwon, 2011. Characteristics of satellite brightness temperature and rainfall intensity over the life cycle of convective cells-case study, Atmosphere, 21(3): 273-284 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.3.273
  17. Kim, H.W., and D.K. Lee, 2006. An observational study of mesoscale convective systems with heavy rainfall over the Korea Peninsula, Weather and Forecasting, 21: 125-148. https://doi.org/10.1175/WAF912.1
  18. Kim, I.H., T.Y. Kwon, and D.R. Kim, 2012. MTSAT satellite image features on the sever storm events in Yeongdong region, Atmosphere, 22(1): 29-45 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.029
  19. Kim, M.H., H.D. Yeo, N. Sugimoto, H.C. Lim, C.K. Lee, B.H. Heo, Y.S. Yu, B.J. Sohn, S.C. Yoon, and S.W. Kim, 2015. Estimation of particle mass concentration from lidar measurement, Atmosphere, 26(1): 169-177 (in Korean with English abstract).
  20. Kim, M.H., S.W. Kim, S.C. Yoon, N Sugimoto, and B.J. Sohn, 2011. Characteristics of the lidar ratio determined from lidar and sky radiometer measurements in Seoul, Atmosphere, 21(1): 57-67 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.1.057
  21. Kim, S.J., G.T. Kim, G.H. Kim, S.O. Han, 2013. Operating technical report of Mobile observation Vehicle(MOVE), National Institute of Meteorological Sciences, 11-1360395-000424-01
  22. Klett, J.D., 1981. Stable analytical inversion solution for processing lidar returns, Applied Optics research, 20(2): 211-220. https://doi.org/10.1364/AO.20.000211
  23. Lim, K.S., and S.Y. Hong, 2010. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei(CCN) for weather and climate model, American Meteorological Society, 138: 1587-1612.
  24. Molod, A.H. Salmun, and M. Dempsey, 2015. Estimating planetary boundary layer heights from NOAA profiler network wind profiler data, Journal of Atmospheric and Oceanic Technology, doi: 10.1175/JTECH-D-14-00155.1.
  25. Murayama, T., H. Okamoto, N. Kaneyasu, H. Kamataki, and K. Miura, 1999. Application of lidar depolarization measurement in the atmospheric boundary layer: Effect of dust and sea-salt particles, Journal of Geophysical Research, 104, 31781-31792. https://doi.org/10.1029/1999JD900503
  26. Park, S.Y., H.W. Lee, S.H. Lee, K.O. Lee, and H.U. Ji, 2011. Impact of the variation of sea breeze penetration due to terrain complexity on PBL development, Journal of Environmental Sciences Internship, 20(2): 275-289 https://doi.org/10.5322/JES.2011.20.2.275
  27. Platt, C.M., S.A. Young, A. Carswell, S. Pal, M.P. McCormick, D.M. Winker, M. Delguasta, L. stefanutti, W. Everhard, M. Hardesty, P. Flamant, R. valentine, B. Forgan, G. Gimmestad, H. Jäger, S. Khmelevtsov, I. Kolev, B. Kaprieolev, Darren, Lu, K. Sassen, V. Shamanaev, O. Uchino, Y. Mizuno, U. Wandinger, C. Weitkamp, A. Ansmann, and C. Wooldridge, 1994. The Experimental Cloud Lidar Pilot Study(ECLIPS) for for cloud-radiation research, Bulletin American Meteorological Society, 75: 1635-1654. https://doi.org/10.1175/1520-0477(1994)075<1635:TECLPS>2.0.CO;2
  28. Seiber, P., F.S.E. Gryning, S. Joffre, A. Rasmussen, P. Tercier, 2000. Review and intercomparison of operational methods for the determination of the mixing height, Atmospheric environment, 34: 1001-1027 https://doi.org/10.1016/S1352-2310(99)00349-0
  29. Seidel, D.J., C.O. Ao, and K. Li, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, Journal of Geophysics Reseach, 115, D16113. https://doi.org/10.1029/2009JD013680
  30. Seo, E.K., and G. Liu, 2006. Determination of 3D cloud ice water contents by combining multiple data sources from satellite, ground radar, and a numerical model, Journal of Applied Meteorology and Climatology, 45, 1494-1504. https://doi.org/10.1175/JAM2430.1
  31. Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos, 2011. Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary later profiling over Athens, Greece, Atmospheric Measurement Techniques, 4: 1261-1273. https://doi.org/10.5194/amt-4-1261-2011
  32. Yeo, H.D., S.W. Kim, C.K. Lee, D.H. Kim, B.G. Kim, S.W. Kim, H.G. Nam, Y.M. Noh, S.J. Park, C.B. Park, K.S. Seo, J.Y. Choi, M.I. Lee, and E.H. Lee, 2016. The KALION automated Aerosol type classification and mass Concentration calculation algorithm, Korean Journal of Remote sensing, 32(2): 119-131 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2016.32.2.5

Cited by

  1. 영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석 vol.34, pp.2, 2016, https://doi.org/10.7780/kjrs.2018.34.2.1.7
  2. ICE-POP 2018기간 동계집중관측자료를 활용한 국지수치모델(LDAPS)의 행성경계층고도 검증 vol.28, pp.4, 2016, https://doi.org/10.14191/atmos.2018.28.4.369
  3. 원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링 vol.35, pp.5, 2016, https://doi.org/10.7780/kjrs.2019.35.5.2.1
  4. Comparison of the Vertical PM2.5 Distributions according to Atmospheric Stability Using a Drone during Open Burning Events vol.36, pp.1, 2016, https://doi.org/10.5572/kosae.2020.36.1.108
  5. 차량탑재 라이다 시스템을 활용한 수치모델 행성경계층고도 검증 vol.36, pp.5, 2016, https://doi.org/10.7780/kjrs.2020.36.5.1.12