JOURNAL BROWSE
Search
Advanced SearchSearch Tips
In silico Study on the Interaction between P-glycoprotein and Its Inhibitors at the Drug Binding Pocket
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
In silico Study on the Interaction between P-glycoprotein and Its Inhibitors at the Drug Binding Pocket
Kim, Namseok; Shin, Jae-Min; No, Kyoung Tai;
  PDF(new window)
 Abstract
P-glycoprotein (P-gp) is a member of the ATP-Binding Cassette transporter superfamily and mediates transmembrane efflux of many drugs. Since it is involved in multi-drug resistance activity in various cancer cells, the development of P-gp inhibitor is one of the major concerns in anticancer therapy. Human P-gp protein has at least two "functional" drug binding sites that are called "H" site and "R" site, hence it has multi-binding-specificities. Though the amino acid residues that constitute in drug binding pockets have been proposed by previous experimental evidences, the shapes and the binding poses are not revealed clearly yet. In this study, human P-gp structure was built by homology modeling with available crystal structure of mouse P-gp as a template and docking simulations were performed with inhibitors such as verapamil, hoechst33342, and rhodamine123 to construct the interaction between human P-gp and its inhibitors. The docking simulations were performed 500 times for each inhibitor, and then the interaction frequency of the amino acids at the binding poses was analyzed. With the analysis results, we proposed highly contributing residues that constitute binding pockets of the human P-gp for the inhibitors. Using the highly contributing residues, we proposed the locations and the shapes of verapamil binding site and "R" site, and suggested the possible position of "H" site.
 Keywords
P-glycoprotein;MDR;Homology modeling;Verapamil;
 Language
English
 Cited by
 References
1.
Watanabe, T.; Kokubu, N.; Charnick, S. B.; Naito, M.; Tsuruo, T. Br. J. Pharmacol. 1997, 122, 241-248. crossref(new window)

2.
Sauna, Z. E.; Ambudkar, S. V. Mol. Cancer. Ther. 2007, 6, 13-23.

3.
Martin, C.; Berridge, G.; Higgins, C. F.; Mistry, P.; Charlton, P.; Callaghan, R. Mol. Pharmacol. 2000, 58, 624-632.

4.
Gottesman, M. M.; Fojo, T.; Bates, S. E. Nat. Rev. Cancer. 2002, 2, 48-58. crossref(new window)

5.
Shepard, R. L.; Winter, M. A.; Hsaio, S. C.; Pearce, H. L.; Beck, W. T.; Dantzig, A. H. Biochem. Pharmacol. 1998, 56, 719-727. crossref(new window)

6.
Loo, T. W.; Bartlett, M. C.; Detty, M. R.; Clarke, D. M. J. Biol. Chem. 2012, 287, 26806-26816. crossref(new window)

7.
Giacomini, K. M.; Huang, S. M.; Tweedie, D. J.; Benet, L. Z.; Brouwer, K. L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K. M.; Hoffmaster, K. A.; Ishikawa, T.; Keppler, D.; Kim, R. B.; Lee, C. A.; Niemi, M.; Polli, J. W.; Sugiyama, Y.; Swaan, P. W.; Ware, J. A.; Wright, S. H.; Yee, S. W.; Zamek- Gliszczynski, M. J.; Zhang, L. Nat. Rev. Drug. Discov. 2010, 9, 215-236. crossref(new window)

8.
Al-Shawi, M. K.; Polar, M. K.; Omote, H.; Figler, R. A. J. Biol. Chem. 2003, 278, 52629-52640. crossref(new window)

9.
Lugo, M. R.; Sharom, F. J. Biochemistry 2005, 44, 643-655. crossref(new window)

10.
Shapiro, A. B.; Ling, V. Eur. J. Biochem. 1997, 250, 130-137. crossref(new window)

11.
Qu, Q.; Sharom, F. J. Biochemistry 2002, 41, 4744-4752. crossref(new window)

12.
Loo, T. W.; Clarke, D. M. Arch. Biochem. Biophys. 2008, 476, 51-64. crossref(new window)

13.
Loo, T. W.; Clarke, D. M. J. Biol. Chem. 2001, 276, 14972-14979. crossref(new window)

14.
Loo, T. W.; Bartlett, M. C.; Clarke, D. M. J. Biol. Chem. 2003, 278, 20449-20452. crossref(new window)

15.
Loo, T. W.; Bartlett, M. C.; Clarke, D. M. Biochem J. 2006, 396, 537-545. crossref(new window)

16.
Loo, T. W.; Bartlett, M. C.; Clarke, D. M. Biochem J. 2006, 399, 351-359. crossref(new window)

17.
Loo, T. W.; Clarke, D. M. J. Biol. Chem. 2002, 277, 44332-44338. crossref(new window)

18.
Loo, T. W.; Bartlett, M. C.; Clarke, D. M. J. Biol. Chem. 2003, 278, 50136-50141. crossref(new window)

19.
Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F.; Higgins, D. G. Nucleic Acids Res. 1997, 25, 4876-4882. crossref(new window)

20.
Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Proteins. 1995, 23, 318-326. crossref(new window)

21.
Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.0, San Diego: Accelrys Software Inc., 2013.

22.
Loo, T. W.; Clarke, D. M. J. Biol. Chem. 1997, 272, 31945-31948. crossref(new window)

23.
Loo, T. W.; Clarke, D. M. J. Biol. Chem. 2000, 275, 39272-39278. crossref(new window)

24.
Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L.; Chang, G. Science 2009, 323, 1718-1722. crossref(new window)

25.
Dawson, R. J.; Locher, K. P. Nature 2006, 443, 180-185. crossref(new window)

26.
Ward, A.; Reyes, C. L.; Yu, J.; Roth, C. B.; Chang, G. Proc. Natl. Acad. Sci. USA 2007, 104, 19005-19010. crossref(new window)

27.
Jin, M. S.; Oldham, M. L.; Zhang, Q.; Chen, J. Nature 2012, 490, 566-569. crossref(new window)

28.
Prajapati, R.; Singh, U.; Patil, A.; Khomane, K. S.; Bagul, P.; Bansal, A. K.; Sangamwar, A. T. J. Comput. Aided Mol. Des. 2013, 27, 347-363. crossref(new window)

29.
Romsicki, Y.; Sharom, F. J. Biochemistry 1999, 38, 6887-6896. crossref(new window)

30.
Crowley, E.; O'Mara, M. L.; Reynolds, C.; Tieleman, D. P.; Storm, J.; Kerr, I. D.; Callaghan, R. Biochemistry 2009, 48, 6249-6258. crossref(new window)

31.
Crowley, E.; O'Mara, M. L.; Kerr, I. D.; Callaghan, R. FEBS J. 2010, 277, 3974-3985. crossref(new window)

32.
Ferreira, R. J.; Ferreira, M. J.; dos Santos, D. J. J. Chem. Inf. Model 2013, 53, 1747-1760. crossref(new window)