DOI QR코드

DOI QR Code

Synthesis and Light Emission from ZnO-Coated Silicon Nanorods

  • Kim, Hyun-Su (Department of Materials science and Engineering, Inha University) ;
  • Jin, Chang-Hyun (Department of Materials science and Engineering, Inha University) ;
  • Park, Sung-Hoon (Department of Materials science and Engineering, Inha University) ;
  • Kim, Hyoun-Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Chong-Mu (Department of Materials science and Engineering, Inha University)
  • Received : 2011.12.02
  • Accepted : 2012.04.17
  • Published : 2012.07.20

Abstract

We report the synthesis and thermal annealing of Si-core/ZnO-shell nanorods using a two-step process comprising the metal-assisted electroless etching of Si and the sputter deposition of ZnO. Transmission electron microscopy and X-ray diffraction analysis showed that the cores of the annealed core-shell nanorods were single crystal diamond cubic-type Si, whereas the shells of the annealed core-shell nanorods were single crystal wurtzite-type ZnO. The PL spectra of Si nanorods consisted of a broad red emission band and a weaker blue emission band. The major emission band of Si nanorods was shifted from 700 nm (in the red region) to 440 nm (in the violet region) by ZnO coating. The violet emission of the core-shell nanorods was enhanced in intensity considerably by annealing in an oxidizing atmosphere. The origin of the PL enhancement by annealing is also discussed.

Keywords

References

  1. Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. Nature 2003, 425, 274. https://doi.org/10.1038/nature01996
  2. Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149. https://doi.org/10.1021/nl025875l
  3. Cullis, A. G.; Canham, L. T. Nature 1991, 353, 335. https://doi.org/10.1038/353335a0
  4. Lin, V. S. Y.; Motesharei, K.; Dancil, K. P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840. https://doi.org/10.1126/science.278.5339.840
  5. Stewart, M. P.; Buriak, J. M. Adv. Mater. 2000, 12, 859. https://doi.org/10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
  6. Marsen, B.; Sattler, K. Phys. Rev. B 1999, 60, 11593. https://doi.org/10.1103/PhysRevB.60.11593
  7. Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Science 2003, 299, 1874. https://doi.org/10.1126/science.1080313
  8. Morales, A. M.; Lieber, C. M. Science 1998, 279, 208. https://doi.org/10.1126/science.279.5348.208
  9. Kim, N. H.; Kim, H. W.; Seoul, C.; Lee, C. Mater. Sci. Eng. B 2004, 111, 131. https://doi.org/10.1016/j.mseb.2004.04.002
  10. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Nature 2004, 430, 61. https://doi.org/10.1038/nature02674
  11. Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Epitaxial Nature 2002, 420, 57. https://doi.org/10.1038/nature01141
  12. Choi, H. J.; Johnson, J. C.; He, R.; Lee, S. K.; Kim, F.; Pauzauskie, P.; Goldberger, J.; Saykally, R. J.; Yang, P. J. Phys. Chem. B 2003, 107, 8721. https://doi.org/10.1021/jp034734k
  13. Kim, H. W.; Shim, S. H.; Lee, C. Mater. Sci. Eng. B 2007, 136, 148. https://doi.org/10.1016/j.mseb.2006.09.019
  14. Park, S.; Kim, H.; Lee, J. W.; Kim, H. W.; Lee, C. J. Kor. Phys. 2008, 53, 657. https://doi.org/10.3938/jkps.53.657
  15. Kim, H. W.; Lee, J. W.; Kebede, M. A.; Kim, H. S.; Srinivasa, B.; Kong, M. H.; Lee, C. J. Nanosci. Nanotechnol. 2008, 8, 5715. https://doi.org/10.1166/jnn.2008.210
  16. Park, S.; Jun, J.; Kim, H. W.; Lee, C. Solid State Commun. 2009, 149, 315. https://doi.org/10.1016/j.ssc.2008.11.037
  17. Jun, J.; Jin, C.; Kim, H.; Kang, J.; Lee, C. Appl. Phys. A 2009, 96, 813. https://doi.org/10.1007/s00339-009-5303-2
  18. Jin, C.; Kim, H.; Kim, H. W.; Lee, C. J. Lumin. 2010, 130, 516. https://doi.org/10.1016/j.jlumin.2009.10.024
  19. Sun, L.; He, H.; Liu, C.; Lu, Y.; Ye, Z. Cryst. Eng. Comm. 2011, 13, 2439. https://doi.org/10.1039/c0ce00844c
  20. Ma, D. D. D.; Lee, S. T.; Shinar, J. Appl. Phys. Lett. 2005, 87, 033107. https://doi.org/10.1063/1.1996838
  21. Canham, L. T. Appl. Phys. Lett. 1990, 57, 1046. https://doi.org/10.1063/1.103561
  22. Lehmann, V.; Gosele, U. Appl. Phys. Lett. 1991, 58, 856. https://doi.org/10.1063/1.104512
  23. Dovrat, M.; Arad, N.; Zhang, X. H.; Lee, S. T.; Sa'ar, A. Phys. Stat. Sol. (a) 2007, 204, 1512. https://doi.org/10.1002/pssa.200674405
  24. Lee, S. T.; Wang, N.; Lee, C. S. Mater. Sci. Eng. A 2000, 286, 16. https://doi.org/10.1016/S0921-5093(00)00658-4
  25. Colli, A.; Hoffman, S.; Fasoli, A.; Ferrari, A. C.; Ducati, C.; Dunin-Borkowski, R. E.; Robertson, J. Appl. Phys. A 2006, 85, 247. https://doi.org/10.1007/s00339-006-3708-8
  26. Wu, C.; Qin, W.; Qin, G.; Zhao, D.; Zhang, J.; Xu, W.; Lin, H. Chem. Phys. Lett. 2003, 378, 368. https://doi.org/10.1016/j.cplett.2003.08.005
  27. Koch, F.; Petrova-Koch, V.; Muschik, T. J. Lumin. 1993, 57, 271. https://doi.org/10.1016/0022-2313(93)90145-D
  28. Fauchet, P. M. J. Lumin. 1996, 70, 294. https://doi.org/10.1016/0022-2313(96)82860-2
  29. Itoh, C.; Suzuki, T.; Itoh, N. Phys. Rev. 1989, 41, 3794.