Advanced SearchSearch Tips
The Homodimerization of Thalictrum tuberosum O-Methyltransferases by Homology-based Modelling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Homodimerization of Thalictrum tuberosum O-Methyltransferases by Homology-based Modelling
Yang, Hee-Jung; Ahn, Joong-Hoon; Jeong, Karp-Joo; Lee, Sang-San; Lim, Yoong-Ho;
  PDF(new window)
Two O-methyltransferases, OMTII-1 and OMTII-4 of meadow rue Thalictrum tuberosum showed a high sequence identity. Of 364 amino acids only one residue is not the same, which is Tyr21 or Cys21. Even if the 21st residues in these OMTs are not included in the binding sites of the enzymes, binding affinities of the enzyme homodimers over the same substrate are very different. While the binding affinity of one homodimer over caffeic acid is 100%, that of the other is 25%. Authors tried to predict the three-dimensional structures of Thalictrum tuberosum O-methyltransferases using homology-based modelling by a comparison with caffeic acid O-methyltransferase, and explain the reason of the phenomenon mentioned above based on their three dimensional structural studies. In the enzyme homodimer, the better binding affinity may be caused by the shorter distance between the 21st residue and the binding site of the other monomer.
Modelling;Molecular dynamics;Homology;Methyltransferase;Thalictrum tuberosum;
 Cited by
Relationships Between the Larval Growth Inhibition of Caenorhabditis elegans by Apigenin Derivatives and Their Structures,;;;;

Archives of Pharmacal Research, 2006. vol.29. 7, pp.582-586
Complete Assignments of the 1H and 13C NMR Data of Flavone Derivatives,;;;;

Bulletin of the Korean Chemical Society, 2005. vol.26. 4, pp.603-608 crossref(new window)
Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007,;;;

Bulletin of the Korean Chemical Society, 2008. vol.29. 2, pp.450-462 crossref(new window)
Dixon, R. A. Nature 2001, 411, 843. crossref(new window)

Maury, S.; Geoffroy, P.; Legrand, M. Plant Physiol. 1999, 121,215. crossref(new window)

Zhong, R.; Morrison, W. H. III; Himmelsbach, D. S.; Poole, F. L.;Ye, Z. H. Plant Physiol. 2000, 124, 563. crossref(new window)

Schaller, H.; Bouvier-Nave, P.; Benveniste, P. Plant Physiol. 1998,118, 461. crossref(new window)

Wang, J.; Pichersky, E. Arch. Biochem. Biophy. 1999, 368, 172. crossref(new window)

Ibrahim, R. K.; Bruneau, A.; Bantignies, B. Plant Mol. Biol. 1998,36, 1. crossref(new window)

Muzac, I.; Wang, J.; Anzellotti, D.; Zhang, H.; Ibrahim, R. K.Arch. Biochem. Biophy. 2000, 375, 385. crossref(new window)

Eckardt, N. A. Plant Cell. 2002, 14, 1185. crossref(new window)

Moon, J. K.; Kim, J.; Rhee, S.; Kim, G.; Yun, H.; Chung, B.; Lee,S.; Lim, Y. Bull. Korean Chem. Soc. 2002, 23, 1545. crossref(new window)

Choe, J.; Chang, S. Bull. Korean Chem. Soc. 2002, 23, 48. crossref(new window)

Frick, S.; Kutchan, T. M. Plant J. 1999, 17, 329. crossref(new window)

Wilmouth, R.; Turnbull, J.; Welford, R.; Clifton, I.; Prescott, A.;Schofield, C. The Protein Data Bank. Structure (London) 2002,10, 93.

Van Aalten, D. M. F.; Crielaard, W.; Hellingwerf, K. J.; Joshua-Tor, L. Acta Crystallogr. Sect. D 2002, 58, 585. crossref(new window)

Yoon, E. Y. Bull. Korean Chem. Soc. 2001, 22, 293.

Gauthier, A.; Gulick, P. J.; Ibrahim, R. K. Arch. Biochem. Biophy.1998, 351, 243. crossref(new window)

Zubieta, C.; Kota, P.; Ferrer, J.; Dixon, R. A.; Noel, J. P. Plant Cell2002, 14, 1265. crossref(new window)