JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Ginseng Research
  • Volume 35, Issue 4,  2011, pp.504-513
  • Publisher : The Korean Society of Ginseng
  • DOI : 10.5142/jgr.2011.35.4.504
 Title & Authors
Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes
Jo, Ick-Hyun; Bang, Kyong-Hwan; Kim, Young-Chang; Lee, Jei-Wan; Seo, A-Yeon; Seong, Bong-Jae; Kim, Hyun-Ho; Kim, Dong-Hwi; Cha, Seon-Woo; Cho, Yong-Gu; Kim, Hong-Sig;
  PDF(new window)
 Abstract
In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.
 Keywords
Panax ginseng;Nucleotide substitution;Fluorescence probes;Single nucleotide polymorphism genotyping;
 Language
English
 Cited by
1.
EST-SSR Marker Sets for Practical Authentication of All Nine Registered Ginseng Cultivars in Korea,;;;;

Journal of Ginseng Research, 2012. vol.36. 3, pp.298-307 crossref(new window)
1.
C.A. Meyer) genome and evidence for allotetraploidy, The Plant Journal, 2014, 77, 6, 906  crossref(new windwow)
2.
De novo transcriptome assembly and the identification of gene-associated single-nucleotide polymorphism markers in Asian and American ginseng roots, Molecular Genetics and Genomics, 2015, 290, 3, 1055  crossref(new windwow)
 References
1.
Park CK, Jeon BS, Yang JW. The chemical components of Korean ginseng. Food Ind Nutr 2003;8:10-23.

2.
Wang LC, Lee TF. Effect of ginseng saponins on cold tolerance in young and elderly rats. Planta Med 2000;66:144-147. crossref(new window)

3.
Shin HR, Kim JY, Yun TK, Morgan G, Vainio H. The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 2000;11:565-576. crossref(new window)

4.
Yun TK, Lee YS, Lee YH, Kim SI, Yun HY. Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J Korean Med Sci 2001;16 Suppl:S6-S18. crossref(new window)

5.
Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48:511-513. crossref(new window)

6.
Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143-149. crossref(new window)

7.
Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, A Rue P, Bell GI et al. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 2005;1740:319-325. crossref(new window)

8.
Joo SS, Won TJ, Lee DI. Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vivo. Planta Med 2005;71:476-481. crossref(new window)

9.
Kwon WS, Chung CM, Kim YT, Lee MG, Choi KT. Breeding process and characteristics of KG101, a superior line of Panax ginseng C.A. Meyer. J Ginseng Res 1998;22:11-17.

10.
Kwon WS, Lee MG, Choi KT. Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C. A. Meyer. J Ginseng Res 2000;24:1-7.

11.
Kwon WS, Lee JH, Park CS, Yang DC. Breeding process and characteristics of Gopoong, a new variety of Panax ginseng C. A. Meyer. J Ginseng Res 2003;27:86-91. crossref(new window)

12.
Chan K. Some aspects of toxic contaminants in herbal medicines. Chemosphere 2003;52:1361-1371. crossref(new window)

13.
Bang KH, Lee SW, Hyun DY, Cho JH, Cha SW, Seong NS, Huh MK. Molecular authentication and genetic polymorphism of Korea ginseng (Panax ginseng C.A. Meyer) by inter-simple sequence repeats (ISSRs) markers. J Life Sci 2004;14:425-428. crossref(new window)

14.
In DS, Kim YC, Bang KH, Chung JW, Kim OT, Hyun DY, Cha SW, Kim TS, Seong NS. Genetic relationships of Panax species by RAPD and ISSR analyses. Korean J Med Crop Sci 2005;13:249-253.

15.
Kim OT, Bang KH, In DS, Lee JW, Kim YC, Shin YS, Hyun DY, Lee SS, Cha SW, Seong NS. Molecular authentication of ginseng cultivars by comparison of internal transcribed spacer and 5.8S rDNA sequences. Plant Biotechnol Rep 2007;1:163-167. crossref(new window)

16.
Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C.A. Meyer). Conserv Genet 2007;8:1507-1509. crossref(new window)

17.
Dan NV, Ramchiary N, Choi SR, Uhm TS, Yang TJ, Ahn IO, Lim YP. Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv Genet 2010;11:1223-1225. crossref(new window)

18.
Bang KH, Chung JW, Kim YC, Lee JW, Jo IH, Seo AY, Kim OT, Hyun DY, Kim DH, Cha SW. Development of SSR markers for identification of Korean ginseng (Panax ginseng C.A. Meyer) cultivars. Korean J Med Crop Sci 2011;19:185-190. crossref(new window)

19.
Wang H, Sun H, Kwon WS, Jin H, Yang DC. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 2009;20:41-45. crossref(new window)

20.
Wang H, Sun H, Kwon WS, Jin H, Yang DC. A PCR-based SNP marker for specific authentication of Korean ginseng (Panax ginseng) cultivar "Chunpoong". Mol Biol Rep 2010;37:1053-1057. crossref(new window)

21.
Lee JW, Kim YC, Jo IH, Seo AY, Lee JH, Kim OT, Hyun DY, Cha SW, Bang KH, Cho JH. Development of an ISSR-derived SACR marker in Korean ginseng cultivars (Panax ginseng C.A. Meyer). J Ginseng Res 2011;35:52-59. crossref(new window)

22.
Sun H, Wang HT, Kwon WS, In JG, Lee BS, Yang DC. Development of molecular markers for the determination of the new cultivar 'Chunpoong' in Panax ginseng C. A. Meyer associated with a major latex-like protein gene. Biol Pharm Bull 2010;33:183-187. crossref(new window)

23.
Lee JW. Development of DNA markers for identification of Korean ginseng cultivars (Panax ginseng C.A. Meyer). Seoul: University of Dongguk, 2010.

24.
Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA et al. 3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 2000;28:655-661. crossref(new window)

25.
Alary R, Serin A, Maury D, Jouira HB, Sirven JP, Gautier MF, Joudrier P. Comparison of simplex and duplex real-time PCR for the quantification of GMO in maize and soybean. Food Control 2002;13:235-244. crossref(new window)

26.
Brodmann PD, Moor D. Sensitive and semi-quantitative $TaqMan^{TM}$ real-time polymerase chain reaction systems for the detection of beef (Bos taurus) and the detection of the family Mammalia in food and feed. Meat Sci 2003;65:599-607. crossref(new window)

27.
Hird H, Lloyd J, Goodier R, Brown J, Reece P. Detection of peanut using real-time polymerase chain reaction. Eur Food Res Technol 2003;217:265-268. crossref(new window)

28.
Taylor MI, Fox C, Rico I, Rico C. Species-specific TaqMan probes for simultaneous identification of (Gadus morhua L.) haddock (Melanogrammus aeglefinus L.) and whiting (Merlangius merlangus L.). Mol Ecol Notes 2002;2:599-601. crossref(new window)

29.
Itoi S, Nakaya M, Kaneko G, Kondo H, Sezaki K, Watabe S. Rapid identification of eels Anguilla japonica and Anguilla anguilla by polymerase chain reaction with single nucleotide polymorphism-based specific probes. Fish Sci 2005;71:1356-1364. crossref(new window)

30.
Lopez I, Pardo MA. Application of relative quantification TaqMan real-time polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares. J Agric Food Chem 2005;53:4554-4560. crossref(new window)

31.
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000;132:365-386.

32.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-98.

33.
De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH. Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat Res 2005;573:111-135. crossref(new window)

34.
Lee JW, Bang KH, Choi JJ, Chung JW, Lee JH, Jo IH, Seo AY, Kim YC, Kim OT, Cha SW. Development of peptide nucleic acid (PNA) microarray for identification of Panax species based on the nuclear ribosomal internal transcribed spacer (ITS) and 5.8S rDNA regions. Genes Genomics 2010;32:463-468. crossref(new window)