JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 3,  2015, pp.221-228
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.3.221
 Title & Authors
Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles
Kharitonskii, P.V.; Gareev, K.G.; Ionin, S.A.; Ryzhov, V.A.; Bogachev, Yu.V.; Klimenkov, B.D.; Kononova, I.E.; Moshnikov, V.A.;
  PDF(new window)
 Abstract
Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.
 Keywords
magnetite;silica;colloidal particles;superparamagnetism;longitudinal nonlinear response;magnetostatic interaction;
 Language
English
 Cited by
1.
Mössbauer Studies on Cation Distributions and Superexchange Interactions in Cu0.2Fe2.8O4,;;;;;

Journal of the Korean Physical Society, 2016. vol.68. 3, pp.403-408 crossref(new window)
1.
Mössbauer studies on cation distributions and superexchange interactions in Cu0.2Fe2.8O4, Journal of the Korean Physical Society, 2016, 68, 3, 403  crossref(new windwow)
2.
Aggregate stability and magnetic characteristics of colloidal Fe m O n –SiO2 particles obtained by sol–gel method, Physics of the Solid State, 2017, 59, 5, 1008  crossref(new windwow)
 References
1.
C. Sun, J. S. H. Lee, and M. Q. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008). crossref(new window)

2.
A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005). crossref(new window)

3.
R. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, and M. Uhlen, Clinical Microbiology Reviews 7, 43 (1994). crossref(new window)

4.
M. N. Widjojoatmodjo, A. C. Fluit, R. Torensma, and J. Verhoef, Journal of Immunological Methods 165, 11 (1993). crossref(new window)

5.
N. Kawai, D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi, and K. Kohri, Vascular Cell 6, 15 (2014). crossref(new window)

6.
I. S. Smolkova, N. E. Kazantseva, K. N. Makoveckaya, P. Smolka, P. Saha, and A. M. Granov, Materials Science and Engineering C 48, 632-641 (2015). crossref(new window)

7.
S. Y. Choi, B. K. Kwak, H. J. Shim, J. Lee, S. U. Hong, and K. A. Kim, Diagnostic and Interventional Radiology 21, 47 (2015). crossref(new window)

8.
K.-H. Lee, E. Liapi, J. A. Vossen, M. Buijs, V. P. Ventura, C. Georgiades, K. Hong, I. Kamel, M. S. Torbenson, and J.-F. H. Geschwind, J. Vasc. Interv. Radiol. 19, 1490 (2008). crossref(new window)

9.
S. Y. Gan and M. Chow, Journal of Materials Chemistry 14, 2781 (2004). crossref(new window)

10.
A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, Biosensors and Bioelectronics 24, 676 (2008). crossref(new window)

11.
J. Sun, S. B. Zhou, P. Hou, Y. Yang, J. Weng, X. H. Li, and M. Y. Li, Journal of Biomedical Materials Research 80A, 333 (2006).

12.
M. D. Butterworth, L. Illum, and S. S. Davis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 179, 93 (2001). crossref(new window)

13.
Q. Xu, X. J. Bian, L. L. Li, X. Y. Hu, M. Sun, D. Chen, and Y. Wang, Electrochemistry Communications 10, 995 (2008). crossref(new window)

14.
L. Neel and C. R. Hebd, Seances Acad. Sci. 228, 664 (1949)

15.
Ann. Geophys. (C.N.R.S.) 5, 99 (1949).

16.
C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120 (1959). crossref(new window)

17.
B. D. Gullity and C. D. Graham, Introduction to Magnetic Materials, IEEE Press, WILEY (2009) p. 383.

18.
S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009). crossref(new window)

19.
J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C 21, 2015 (1988). crossref(new window)

20.
S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, IEEE Trans. Magn. 29, 2619 (1993). crossref(new window)

21.
R. W. Chantrell, In: Magnetic Hysteresis in Novel Magnetic Materials, by ed. G. C. Hadjipanayis, NATO Advanced Study Institute, Series E: Applied Sciences, vol. 338, Kluwer, Dordrecht (1997) p. 21.

22.
R. W. Chantrell, M. El-Hilo, and K. O'Grady, IEEE Trans. Magn. 27, 3570 (1991). crossref(new window)

23.
M. El-Hilo, K. O'Grady, and R. W. Chantrell, J. Magn. Magn. Mater. 114, 295 (1992). crossref(new window)

24.
K. O'Grady, M El-Hilo, and R. W. Chantrell, IEEE Trans. Magn. 29, 2608 (1993). crossref(new window)

25.
W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991). crossref(new window)

26.
S. Morup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994). crossref(new window)

27.
S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B 52, 287 (1995). crossref(new window)

28.
Yu. V. Bogachev, K. G. Gareev, L. B. Matyushkin, V. A. Moshnokov, and A. N. Naumova, Phys. of the Sol. St. 55, 2313 (2013).

29.
R. Massart. IEEE Trans. Magn. 17, 1247 (1981). crossref(new window)

30.
I. E. Kononova, K. G. Gareev, V. A. Moshnikov, V. I. Al'myashev, and O. V. Kucherova, Inorganic Materials 50, 68 (2014). crossref(new window)

31.
V. I. Al'myashev, K. G. Gareev, S. A. Ionin, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Physics of the Solid State 56, 2155 (2014). crossref(new window)

32.
V. A. Ryzhov, I. I. Larionov, and V. N. Fomichev. Zh. Tekh. Fiz. 66, 183 (1996) [Tech. Phys. 41, 620 (1996)]

33.
V. A. Ryzhov, and E. I. Zavatskii, Patent No 2507525, registered in Russia 20.02.2014.

34.
Yu. V. Bogachev, Ju. S. Chernenco, K. G. Gareev, I. E. Kononova, L. B. Matyushkin, V. A. Moshnikov, and S. S. Nalimova, Appl. Magn. Reson. 45, 329 (2014). crossref(new window)

35.
D. Shaw. Introduction to Colloid and Surface Chemistry. Elsevier (1992) p. 320.

36.
I. E. Gracheva, G. Olchowik, K. G. Gareev, V. A. Moshnikov, V. V. Kuznetsov, and J. M. Olchowik, J. Phys. Chem. Sol. 74, 656 (2013). crossref(new window)

37.
I. E. Gracheva, V. A. Moshnikov, and K. G. Gareev, Glass Phys. Chem. 39, 311 (2013). crossref(new window)

38.
G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003). crossref(new window)

39.
L. R. Bickford, J. M. Brownlow, and F. R. Penoyer, Proc. IEEE 104, 238 (1957).

40.
F. Bodker, S. Mørup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994). crossref(new window)

41.
V. A. Ryzhov, I. V. Pleshakov, A. A. Nechitailov, N. V. Glebova, E. N. Pyatyshev, A. V. Malkova, I. A. Kisilev, and V. V. Matveev, Appl. Magn. Reson. 46, 339 (2014).

42.
P. V. Kharitonskii, A. M. Frolov, S. A. Boev, V. S. Rudnev, I. A. Tkachenko, V. P. Morozova, I. V. Lukiyanchuk, M. V. Adigamova, and A. Yu. Ustinov, Sol. St. Phen. 215, 200 (2014). crossref(new window)