Advanced SearchSearch Tips
The roles of FADD in extrinsic apoptosis and necroptosis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 45, Issue 9,  2012, pp.496-508
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2012.45.9.186
 Title & Authors
The roles of FADD in extrinsic apoptosis and necroptosis
Lee, Eun-Woo; Seo, Jin-Ho; Jeong, Man-Hyung; Lee, Sang-Sik; Song, Jae-Whan;
  PDF(new window)
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Caspase-8;FADD;Necroptosis;Programmed necrosis;RIP3;
 Cited by
PIDD mediates and stabilizes the interaction between RAIDD and Caspase-2 for the PIDDosome assembly,;;

BMB Reports, 2013. vol.46. 9, pp.471-476 crossref(new window)
Interplay between autophagy and programmed cell death in mammalian neural stem cells,;;

BMB Reports, 2013. vol.46. 8, pp.383-390 crossref(new window)
Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways,;;;;

BMB Reports, 2013. vol.46. 12, pp.611-616 crossref(new window)
Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches,;;;;;;;

BMB Reports, 2013. vol.46. 12, pp.588-593 crossref(new window)
Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells,;;;;;;;

Nutrition Research and Practice, 2014. vol.8. 2, pp.132-137 crossref(new window)
Induction of Apoptosis in Cervical Carcinoma HeLa Cells by Petasites japonicus Ethanol Extracts,;;;;;

Food Science and Biotechnology, 2015. vol.24. 2, pp.665-672 crossref(new window)
The role of autophagy in the intracellular survival ofCampylobacter concisus, FEBS Open Bio, 2014, 4, 1, 301  crossref(new windwow)
Interplay between autophagy and programmed cell death in mammalian neural stem cells, BMB Reports, 2013, 46, 8, 383  crossref(new windwow)
Effect of UVC radiation on mouse fibroblasts deficient for FAS-associated protein with death domain, International Journal of Radiation Biology, 2016, 92, 8, 475  crossref(new windwow)
Protective effect of mild-induced hypothermia against moderate traumatic brain injury in rats involved in necroptotic and apoptotic pathways, Brain Injury, 2017, 31, 3, 406  crossref(new windwow)
USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics, Cell Death and Differentiation, 2015, 22, 9, 1463  crossref(new windwow)
Cyclosporine A Regulates Pro-Inflammatory Cytokine Production in Ulcerative Colitis, Archivum Immunologiae et Therapiae Experimentalis, 2015, 63, 1, 53  crossref(new windwow)
The CD95/CD95L signaling pathway: A role in carcinogenesis, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2014, 1846, 1, 130  crossref(new windwow)
Structural determinants of DISC function: New insights into death receptor-mediated apoptosis signalling, Pharmacology & Therapeutics, 2013, 140, 2, 186  crossref(new windwow)
CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3, Nature Cell Biology, 2016, 18, 3, 291  crossref(new windwow)
Autophagy and apoptosis dysfunction in neurodegenerative disorders, Progress in Neurobiology, 2014, 112, 24  crossref(new windwow)
Induction of apoptosis in cervical carcinoma HeLa cells by Petasites japonicus ethanol extracts, Food Science and Biotechnology, 2015, 24, 2, 665  crossref(new windwow)
Role of autophagy and its significance in cellular homeostasis, Applied Microbiology and Biotechnology, 2014, 98, 12, 5319  crossref(new windwow)
Fatty acid synthase–associated protein with death domain: a prognostic factor for survival in patients with nasopharyngeal carcinoma, Human Pathology, 2014, 45, 12, 2447  crossref(new windwow)
Improved therapeutic efficacy of mammalian expressed-recombinant interferon gamma against ovarian cancer cells, Experimental Cell Research, 2017, 359, 1, 20  crossref(new windwow)
Protective effects of arjunolic acid against cardiac toxicity induced by oral sodium nitrite: Effects on cytokine balance and apoptosis, Life Sciences, 2014, 111, 1-2, 18  crossref(new windwow)
CD8+CD122+CD49dlowregulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity, Proceedings of the National Academy of Sciences, 2016, 113, 9, 2460  crossref(new windwow)
Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death, Biochemical Pharmacology, 2017, 140, 41  crossref(new windwow)
Autophagy and apoptosis: where do they meet?, Apoptosis, 2014, 19, 4, 555  crossref(new windwow)
Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches, BMB Reports , 2013, 46, 12, 588  crossref(new windwow)
Thymoquinone ameliorates testicular tissue inflammation induced by chronic administration of oral sodium nitrite, Andrologia, 2016, 48, 5, 501  crossref(new windwow)
ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly, BMC Cancer, 2015, 15, 1  crossref(new windwow)
Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells, International Journal of Oncology, 2013, 43, 6, 1943  crossref(new windwow)
PIDD mediates and stabilizes the interaction between RAIDD and Caspase-2 for the PIDDosome assembly, BMB Reports, 2013, 46, 9, 471  crossref(new windwow)
Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells, Apoptosis, 2014, 19, 12, 1702  crossref(new windwow)
Protective effects of paeoniflorin against FasL-induced apoptosis of intervertebral disc annulus fibrosus cells via Fas-FasL signalling pathway, Experimental and Therapeutic Medicine, 2015, 10, 6, 2351  crossref(new windwow)
β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016, 1863, 6, 1189  crossref(new windwow)
Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells, Nutrition Research and Practice, 2014, 8, 2, 132  crossref(new windwow)
Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus, Blood, 2017, 129, 24, 3237  crossref(new windwow)
Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells, Cell Death Discovery, 2016, 2, 16065  crossref(new windwow)
Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways, BMB Reports, 2013, 46, 12, 611  crossref(new windwow)
Werner, M. H., Wu, C. and Walsh, C. M. (2006) Emerging roles for the death adaptor FADD in death receptor avidity and cell cycle regulation. Cell Cycle. 5, 2332-2338. crossref(new window)

Tourneur, L. and Chiocchia, G. (2010) FADD: a regulator of life and death. Trends Immunol. 31, 260-269. crossref(new window)

Alappat, E. C., Feig, C., Boyerinas, B., Volkland, J., Samuels, M., Murmann, A. E., Thorburn, A., Kidd, V. J., Slaughter, C. A., Osborn, S. L., Winoto, A., Tang, W. J. and Peter, M. E. (2005) Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol. Cell 19, 321-332. crossref(new window)

Jang, M. S., Lee, S. J., Kim, C. J., Lee, C. W. and Kim, E. (2011) Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD. Oncogene 30, 471-481. crossref(new window)

Jang, M. S., Lee, S. J., Kang, N. S. and Kim, E. (2011) Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Res. 71, 7207-7215. crossref(new window)

Alappat, E. C., Volkland, J. and Peter, M. E. (2003) Cell cycle effects by C-FADD depend on its C-terminal phosphorylation site. J. Biol. Chem. 278, 41585-41588. crossref(new window)

Rochat-Steiner, V., Becker, K., Micheau, O., Schneider, P., Burns, K. and Tschopp, J. (2000) FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J. Exp. Med. 192, 1165-1174. crossref(new window)

Scaffidi, C., Volkland, J., Blomberg, I., Hoffmann, I., Krammer, P. H. and Peter, M. E. (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J. Immunol. 164, 1236-1242. crossref(new window)

Schrijvers, M. L., Pattje, W. J., Slagter-Menkema, L., Mastik, M. F., Gibcus, J. H., Langendijk, J. A., van der Wal, J. E., van der Laan, B. F. and Schuuring, E. (2012) FADD expression as a prognosticator in early-stage glottic squamous cell carcinoma of the larynx treated primarily with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 1220-1226. crossref(new window)

Schinske, K. A., Nyati, S., Khan, A. P., Williams, T. M., Johnson, T. D., Ross, B. D., Tomas, R. P. and Rehemtulla, A. (2011) A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-kappaB. Mol. Cancer Ther. 10, 1807-1817. crossref(new window)

Bhojani, M. S., Chen, G., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 4, 1478-1481. crossref(new window)

Chen, G., Bhojani, M. S., Heaford, A. C., Chang, D. C., Laxman, B., Thomas, D. G., Griffin, L. B., Yu, J., Coppola, J. M., Giordano, T. J., Lin, L., Adams, D., Orringer, M. B., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc. Natl. Acad. Sci. U.S.A. 102, 12507-12512. crossref(new window)

Tourneur, L., Mistou, S., Michiels, F. M., Devauchelle, V., Renia, L., Feunteun, J. and Chiocchia, G. (2003) Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene 22, 2795-2804. crossref(new window)

Tourneur, L., Delluc, S., Levy, V., Valensi, F., Radford- Weiss, I., Legrand, O., Vargaftig, J., Boix, C., Macintyre, E. A., Varet, B., Chiocchia, G. and Buzyn, A. (2004) Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res. 64, 8101-8108. crossref(new window)

Bonnet, M. C., Preukschat, D., Welz, P. S., van Loo, G., Ermolaeva, M. A., Bloch, W., Haase, I. and Pasparakis, M. (2011) The adaptor protein fadd protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572-582. crossref(new window)

Lu, J. V., Weist, B. M., van Raam, B. J., Marro, B. S., Nguyen, L. V., Srinivas, P., Bell, B. D., Luhrs, K. A., Lane, T. E., Salvesen, G. S. and Walsh, C. M. (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl. Acad. Sci. U.S.A. 108, 15312-15317. crossref(new window)

Welz, P. S., Wullaert, A., Vlantis, K., Kondylis, V., Fernandez- Majada, V., Ermolaeva, M., Kirsch, P., Sterner-Kock, A., van Loo, G. and Pasparakis, M. (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330-334. crossref(new window)

Zhang, H., Zhou, X., McQuade, T., Li, J., Chan, F. K. and Zhang, J. (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376. crossref(new window)

Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. (2000) Fas triggers an alternative, caspase- 8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495. crossref(new window)

Lin, Y., Devin, A., Rodriguez, Y. and Liu, Z. G. (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526. crossref(new window)

Feng, S., Yang, Y., Mei, Y., Ma, L., Zhu, D. E., Hoti, N., Castanares, M. and Wu, M. (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19, 2056-2067. crossref(new window)

O'Donnell, M. A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D. R. and Ting, A. T. (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437-1442. crossref(new window)

Kroemer, G., Galluzzi, L. and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. crossref(new window)

Mahmood, Z. and Shukla, Y. (2010) Death receptors: targets for cancer therapy. Exp. Cell Res. 316, 887-899. crossref(new window)

Mc Guire, C., Beyaert, R. and van Loo, G. (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619-628. crossref(new window)

French, L. E. and Tschopp, J. (2003) Protein-based therapeutic approaches targeting death receptors. Cell Death Differ. 10, 117-123. crossref(new window)

Wajant, H. (2003) Death receptors. Essays Biochem. 39, 53-71.

Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H. and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579-5588.

Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H. and Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687. crossref(new window)

Barnhart, B. C., Alappat, E. C. and Peter, M. E. (2003) The CD95 type I/type II model. Semin. Immunol. 15, 185-193. crossref(new window)

Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A. and Korsmeyer, S. J. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891. crossref(new window)

Ozoren, N. and El-Deiry, W. S. (2002) Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551-557. crossref(new window)

Willis, S. N. and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617-625. crossref(new window)

Johnstone, R. W., Frew, A. J. and Smyth, M. J. (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782-798. crossref(new window)

Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. crossref(new window)

Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. crossref(new window)

Lavrik, I., Golks, A. and Krammer, P. H. (2005) Death receptor signaling. J. Cell Sci. 118, 265-267. crossref(new window)

Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348-355. crossref(new window)

Symons, A., Beinke, S. and Ley, S. C. (2006) MAP kinase kinase kinases and innate immunity. Trends Immunol. 27, 40-48. crossref(new window)

Varfolomeev, E. E. and Ashkenazi, A. (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491-497. crossref(new window)

Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700. crossref(new window)

Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257. crossref(new window)

Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L. and Chen, Z. J. (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548. crossref(new window)

Declercq, W., Vanden Berghe, T. and Vandenabeele, P. (2009) RIP kinases at the crossroads of cell death and survival. Cell 138, 229-232. crossref(new window)

Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. crossref(new window)

Shembade, N., Ma, A. and Harhaj, E. W. (2010) Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135-1139. crossref(new window)

Enesa, K., Zakkar, M., Chaudhury, H., Luong le, A., Rawlinson, L., Mason, J. C., Haskard, D. O., Dean, J. L. and Evans, P. C. (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036-7045. crossref(new window)

Xu, G., Tan, X., Wang, H., Sun, W., Shi, Y., Burlingame, S., Gu, X., Cao, G., Zhang, T., Qin, J. and Yang, J. (2010) Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J. Biol. Chem. 285, 969-978. crossref(new window)

Wang, L., Du, F. and Wang, X. (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693-703. crossref(new window)

Schutze, S., Tchikov, V. and Schneider-Brachert, W. (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 655-662. crossref(new window)

Varfolomeev, E. and Vucic, D. (2008) (Un)expected roles of c-IAPs in apoptotic and NFkappaB signaling pathways. Cell Cycle 7, 1511-1521. crossref(new window)

Vince, J. E., Wong, W. W., Khan, N., Feltham, R., Chau, D., Ahmed, A. U., Benetatos, C. A., Chunduru, S. K., Condon, S. M., McKinlay, M., Brink, R., Leverkus, M., Tergaonkar, V., Schneider, P., Callus, B. A., Koentgen, F., Vaux, D. L. and Silke, J. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682-693. crossref(new window)

Ozturk, S., Schleich, K. and Lavrik, I. N. (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp. Cell Res. 318, 1324-1331. crossref(new window)

Yu, J. W. and Shi, Y. (2008) FLIP and the death effector domain family. Oncogene 27, 6216-6227. crossref(new window)

Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., Briand, C. and Grutter, M. G. (2002) The long form of FLIP is an activator of caspase- 8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162-45171. crossref(new window)

Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. and Salvesen, G. S. (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem. J. 382, 651-657. crossref(new window)

Chang, L., Kamata, H., Solinas, G., Luo, J. L., Maeda, S., Venuprasad, K., Liu, Y. C. and Karin, M. (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalphainduced cell death by inducing c-FLIP(L) turnover. Cell 124, 601-613. crossref(new window)

Panka, D. J., Mano, T., Suhara, T., Walsh, K. and Mier, J. W. (2001) Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. 276, 6893-6896. crossref(new window)

Pennarun, B., Meijer, A., de Vries, E. G., Kleibeuker, J. H., Kruyt, F. and de Jong, S. (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim. Biophys. Acta. 1805, 123-140.

Feig, C., Tchikov, V., Schutze, S. and Peter, M. E. (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26, 221-231. crossref(new window)

Wagner, K. W., Punnoose, E. A., Januario, T., Lawrence, D. A., Pitti, R. M., Lancaster, K., Lee, D., von Goetz, M., Yee, S. F., Totpal, K., Huw, L., Katta, V., Cavet, G., Hymowitz, S. G., Amler, L. and Ashkenazi, A. (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070-1077. crossref(new window)

Kaunisto, A., Kochin, V., Asaoka, T., Mikhailov, A., Poukkula, M., Meinander, A. and Eriksson, J. E. (2009) PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ. 16, 1215-1226. crossref(new window)

Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N. and Rojanasakul, Y. (2005) Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J. Biol. Chem. 280, 42044-42050. crossref(new window)

Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamaki, T., Johnson, M. S., Sistonen, L. and Eriksson, J. E. (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280, 27345-27355. crossref(new window)

Kim, Y., Suh, N., Sporn, M. and Reed, J. C. (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J. Biol. Chem. 277, 22320-22329. crossref(new window)

Perez, D. and White, E. (2003) E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol. 77, 2651-2662. crossref(new window)

Cursi, S., Rufini, A., Stagni, V., Condo, I., Matafora, V., Bachi, A., Bonifazi, A. P., Coppola, L., Superti-Furga, G., Testi, R. and Barila, D. (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J. 25, 1895-1905. crossref(new window)

McDonald, E. R., 3rd and El-Deiry, W. S. (2004) Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc. Natl. Acad. Sci. U.S.A. 101, 6170-6175. crossref(new window)

Liao, W., Xiao, Q., Tchikov, V., Fujita, K., Yang, W., Wincovitch, S., Garfield, S., Conze, D., El-Deiry, W. S., Schutze, S. and Srinivasula, S. M. (2008) CARP-2 is an endosome- associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation. Curr. Biol. 18, 641-649. crossref(new window)

Jesenberger, V. and Jentsch, S. (2002) Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112-121. crossref(new window)

Lee, J. C. and Peter, M. E. (2003) Regulation of apoptosis by ubiquitination. Immunol. Rev. 193, 39-47. crossref(new window)

Lee, E. W., Kim, J. H., Ahn, Y. H., Seo, J., Ko, A., Jeong, M., Kim, S. J., Ro, J. Y., Park, K. M., Lee, H. W., Park, E. J., Chun, K. H. and Song, J. (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun. 3, 978. crossref(new window)

Laster, S. M., Wood, J. G. and Gooding, L. R. (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629-2634.

Lin, Y., Choksi, S., Shen, H. M., Yang, Q. F., Hur, G. M., Kim, Y. S., Tran, J. H., Nedospasov, S. A. and Liu, Z. G. (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828. crossref(new window)

Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919-930. crossref(new window)

Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119. crossref(new window)

Chan, F. K., Shisler, J., Bixby, J. G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B. and Lenardo, M. J. (2003) A role for tumor necrosis factor receptor-2 and receptor- interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613-51621. crossref(new window)

He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L. and Wang, X. (2009) Receptor interacting protein kinase- 3 determines cellular necrotic response to TNFalpha. Cell 137, 1100-1111. crossref(new window)

Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009) Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123. crossref(new window)

Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. crossref(new window)

Ma, Y., Temkin, V., Liu, H. and Pope, R. M. (2005) NF-kappaB protects macrophages from lipopolysaccharideinduced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827-41834. crossref(new window)

Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host & Microbe 7, 302-313. crossref(new window)

Kalai, M., Van Loo, G., Vanden Berghe, T., Meeus, A., Burm, W., Saelens, X. and Vandenabeele, P. (2002) Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981-994. crossref(new window)

Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., Levi, F., Lidereau, R., Nogues, C., Mira, J. P., Chompret, A., Joulin, V., Clavel-Chapelon, F., Bourhis, J., Andre, F., Delaloge, S., Tursz, T., Kroemer, G. and Zitvogel, L. (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050-1059. crossref(new window)

Hacker, H. and Karin, M. (2006) Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13. crossref(new window)

Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J. and Yuan, J. (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311-1323. crossref(new window)

Laukens, B., Jennewein, C., Schenk, B., Vanlangenakker, N., Schier, A., Cristofanon, S., Zobel, K., Deshayes, K., Vucic, D., Jeremias, I., Bertrand, M. J., Vandenabeele, P. and Fulda, S. (2011) Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 13, 971-979. crossref(new window)

McComb, S., Cheung, H. H., Korneluk, R. G., Wang, S., Krishnan, L. and Sad, S. (2012) cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ. (In press).

Moulin, M., Anderton, H., Voss, A. K., Thomas, T., Wong, W. W., Bankovacki, A., Feltham, R., Chau, D., Cook, W. D., Silke, J. and Vaux, D. L. (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679-1691. crossref(new window)

Vanlangenakker, N., Bertrand, M. J., Bogaert, P., Vandenabeele, P. and Berghe, T. V. (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230. crossref(new window)

Micheau, O. and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. crossref(new window)

Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I. L., Korkina, O., Teng, X., Abbott, D., Cuny, G. D., Yuan, C., Wagner, G., Hedrick, S. M., Gerber, S. A., Lugovskoy, A. and Yuan, J. (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313-321. crossref(new window)

Duprez, L., Takahashi, N., Van Hauwermeiren, F., Vandendriessche, B., Goossens, V., Vanden Berghe, T., Declercq, W., Libert, C., Cauwels, A. and Vandenabeele, P. (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908-918. crossref(new window)

Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W. and Vandenabeele, P. (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477-1485. crossref(new window)

Bohgaki, T., Mozo, J., Salmena, L., Matysiak-Zablocki, E., Bohgaki, M., Sanchez, O., Strasser, A., Hakem, A. and Hakem, R. (2011) Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim-/- mice. J. Cell Biol. 195, 277-291. crossref(new window)

Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F. and Becker, C. (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335-339. crossref(new window)

Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyaert, R., Jacob, W. A. and Fiers, W. (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317-5323.

Antosiewicz, J., Ziolkowski, W., Kaczor, J. J. and Herman-Antosiewicz, A. (2007) Tumor necrosis factor-alpha- induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic. Biol. Med. 43, 265-270. crossref(new window)

Xie, C., Zhang, N., Zhou, H., Li, J., Li, Q., Zarubin, T., Lin, S. C. and Han, J. (2005) Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor- induced death in L929 cells. Mol. Cell Biol. 25, 6673-6681. crossref(new window)