DOI QR코드

DOI QR Code

Genomic Sequence Analysis and Organization of BmKαTx11 and BmKαTx15 from Buthus martensii Karsch: Molecular Evolution of α-toxin genes

  • Xu, Xiuling (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Cao, Zhijian (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Sheng, Jiqun (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Wu, Wenlan (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Luo, Feng (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Sha, Yonggang (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Mao, Xin (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Liu, Hui (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Jiang, Dahe (Department of Biotechnology, College of Life Sciences, Wuhan University) ;
  • Li, Wenxin (Department of Biotechnology, College of Life Sciences, Wuhan University)
  • Published : 2005.07.31

Abstract

Based on the reported cDNA sequences of $BmK{\alpha}Txs$, the genes encoding toxin $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$ were amplified by PCR from the Chinese scorpion Buthus martensii Karsch genomic DNA employing synthetic oligonucleotides. Sequences analysis of nucleotide showed that an intron about 500 bp length interrupts signal peptide coding regions of $BmK{\alpha}Tx11$ and $BmK{\alpha}Tx15$. Using cDNA sequence of $BmK{\alpha}Tx11$ as probe, southern hybridization of BmK genome total DNA was performed. The result indicates that $BmK{\alpha}Tx11$ is multicopy genes or belongs to multiple gene family with high homology genes. The similarity of $BmK{\alpha}$-toxin gene sequences and southern hybridization revealed the evolution trace of $BmK{\alpha}$-toxins: $BmK{\alpha}$-toxin genes evolve from a common progenitor, and the genes diversity is associated with a process of locus duplication and gene divergence.

Keywords

References

  1. Couraud, F., Jover, E., Dubios, J. M. and Rochat, H. (1982) Two types of scorpion toxin receptor siteds, one related to the activation, the other to the inactication of the action potential sodium channel. Toxicon 20, 9-16 https://doi.org/10.1016/0041-0101(82)90138-6
  2. Corona, M., Zurita, M., Possani, L. D. and Becerril, B. (1996) Cloning and characterization of the genomic region encoding toxin IV-5 from the scorpion Tiyus serrulatus. Toxicon 34, 251-256 https://doi.org/10.1016/0041-0101(95)00129-8
  3. Csank, C., Taylor, F. M. and Martindale, D. W. (1990) Nuclear pre-mRNA introns: analysis and comparison of intron sequence from Tetrdhymena thernophila and other eukaryotes. Nucleic Acids. Res. 18, 5133-5041 https://doi.org/10.1093/nar/18.17.5133
  4. Delabre, M. L., Pasero, P., Marilley, M. and Bougis, P. E. (1995) Promoter structure and intron-exon organization of a scorpion alpha-toxin gene. Biochemistry 34, 6729-6736 https://doi.org/10.1021/bi00020a018
  5. Goudet, C., Chi, C. and Tytgat, J. (2002) An overview of toxins and genes from the venom of the Asian scorpion Buthus martensii Karsch. Toxicon 40, 1239-1258 https://doi.org/10.1016/S0041-0101(02)00142-3
  6. Goudet, C., Huys, I., Clynen, E., Schoofs, L., Wang, D., Waelkens, E. and Tytgat, J. (2001) Electrophysiological characterization of BmKM1, an alpha-like toxin from Buthus martensi Karsch venom. FEBS Lett. 495, 61-65 https://doi.org/10.1016/S0014-5793(01)02365-1
  7. He, X. L., Li, H. M., Zeng, Z. H., Liu, X. Q., Wang, M. and Wang, D. C. (1999) Crystalstructures of two á-like scorpion toxins: Non-proline cis peptide bonds and implications fornew binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125-135 https://doi.org/10.1006/jmbi.1999.3036
  8. Housset, D., Habersetzer-Rochat, C., Astier, J. P. and Fontecilla-Camps, J. C. (1994) Crystal structure of toxin II from the scorpion Androctonus australis Hector refined at 1.3 Aresolution. J. Mol. Biol. 238, 88-103 https://doi.org/10.1006/jmbi.1994.1270
  9. Kopeyan, C., Martinez, G. and Rochat, H. (1985) Primary structure of toxin IV of Leiurus quinquestriatus, characterization of a new group of scorpion toxins. FEBS Lett. 181, 211-217 https://doi.org/10.1016/0014-5793(85)80262-3
  10. Liu, Y., Ma, R. and Wang, S. (2003) Expression of an antitumoranalgesic peptide from the venom of Chinese scorpion Buthus martensii kirsch in Escherichia coli. Protein Expr. Purif. 27, 253-258 https://doi.org/10.1016/S1046-5928(02)00609-5
  11. Liu, Y., Hu, J. and Zhang, J. (2002) Isolation, purification, and Nterminal partial sequence of an antitumorpeptide from the venom of the Chinese scorpion Buthus martensii kirsch. Preparative Biochem. Biotech. 32, 317-327 https://doi.org/10.1081/PB-120015456
  12. Possani, L. D., Becerril, B., Delepierre, M. and Tytgat, J. (1999) Scorpion toxins specific for $Na^+$-channels. Eur. J. Biochem. 264, 287-300 https://doi.org/10.1046/j.1432-1327.1999.00625.x
  13. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A laboratory manual. 3rd. Cold Spring Harbor Laboratory Press, New York, USA
  14. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA seqencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  15. Xiong, Y. M., Ling, M. H., Wang, D. C. and Chi, C. W. (1997) The cDNA and genomic DNA sequences of a mammalian neurotoxin from the scorpion Buthus martensii Karsch. Toxicon 35, 1025-1031 https://doi.org/10.1016/S0041-0101(96)00224-3
  16. Zhu, S. Y., Li, W. X. and Zeng, X. C. (2000) Nine novel precursors of Buthus martensii scorpion a-toxin homologues. Toxicon 38, 1653-1661 https://doi.org/10.1016/S0041-0101(00)00081-7
  17. Zhu, S. and Li, W. X. (2002) Molecular evolution of scorpion atoxin: accelerated evolution and function divergence. Progress Nature Scicence 12, 271-276

Cited by

  1. Purification, characterization and cDNA cloning of an analgesic peptide from the chinese scorpion Buthus martensii Karsch (BmK AGP-SYPU2) vol.45, pp.6, 2011, https://doi.org/10.1134/S0026893311060203
  2. Genetic mechanisms of scorpion venom peptide diversification vol.47, pp.3, 2006, https://doi.org/10.1016/j.toxicon.2005.11.013
  3. Scorpion and spider venom peptides: Gene cloning and peptide expression vol.58, pp.8, 2011, https://doi.org/10.1016/j.toxicon.2011.09.015
  4. Genomic characterisation of the toxin Amm VIII from the scorpion Androctonus mauretanicus mauretanicus vol.47, pp.5, 2006, https://doi.org/10.1016/j.toxicon.2006.01.005
  5. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus vol.1, 2014, https://doi.org/10.1038/sdata.2014.23